ИИ как экосистема, бизнес и рынок
На данном рисунке показано, что разработчики ИИ-проекта должны обеспечить наличие оптимальной ИТ-инфраструктуры (аппаратного и программного обеспечения, которое наиболее эффективно отрабатывает нагрузки, типичные для ИИ). На рисунке 3.7 отмечены специализированные процессоры GPU, TPU 9TPU(Google Tensor Processing Unit) - тензорный процессор, относящийся к классу нейронных процессоров, являющийся специализированной интегральной схемой, разработанной корпорацией Google и предназначенной для использования с библиотекой машинного обучения TensorFlow, нейропроцессоры и т. п., о которых речь пойдет далее в этой лекции. Необходимо обеспечить безопасность и надежность создаваемого решения, его интерпретируемость, предусмотреть отсутствие предвзятости, нарушения норм этики и т. п. Каждая из этих задач подразумевает наличие отдельной профессиональной экспертизы и соответствующих типов компаний, оказывающих перечисленные сервисы.
Рис. 3.7. Типовая архитектура ИИ-ML-проекта. Источник: Artificial Intelligence Short History, Present Developments, and Future Outlook - Final Report - 2021-04-16
Заметим также, что понятие "типовой проект" зависит от масштаба внедрения, от размера компании, от ее зрелости с точки зрения внедрения ИИ-решений, от того, какой есть опыт в организации по выполнению подобного рода проектов (внедряет компания проект своими силами или ориентируется на аутсорсинг).
Выше мы рассмотрели логику построения отдельного ИИ-проекта. Для того чтобы не просто реализовать единичный ИИ-проект, а внедрить практику применения ИИ в обработке данных на предприятии, нужны определенные организационные меры, в ряде случаев требующие привлечения сторонних организаций, которые помогут выработать стратегию внедрения технологий ИИ, выбрать необходимый инструментарий, проработают варианты построения необходимой инфраструктуры, помогут эти решения построить и поддерживать.
На разных этапах построения ИИ-решений на предприятии решаются разные задачи, требующие привлечения компаний с разными компетенциями. В таблице 3.1 показаны основные составляющие, необходимые для внедрения ИИ в организации на разных этапах зрелости построенной ИИ-инфраструктуры.
Начальный уровень | Экспериментальный уровень | Фиксированный уровень | Управляемый уровень | Оптимизированный уровень | |
---|---|---|---|---|---|
Технологии ИИ | нет | исследовательские | ограниченные | продвинутые | ведущие |
Данные | ограниченно доступные данные | использование ретроспективных данных | использование прогностических данных | доступны достоверные данные | аудит на основе данных |
Люди и компетенции | нет | внешние ИИ-компетенции | активные ИИ-компетенции | внутренние ИИ-компетенции | ведущие ИИ-компетенции |
Процессы | нет | индивидуальные и исследовательские | дополненные ии | интегрированные с ии | основанные на ии |
стратегии и управление | нет | предварительная | начальная | сформулированная | утрвержденная |
бюджет | нет | начальный | интегрированный в общий | отдельный | утвержденный целевой |
продукты и услуги | нет | стадии доказательства концепции | внутренние примеры внедрений | внешние примеры внедрений | тиражируемые ИИ-продукты и услуги |
соблюдение вопросов этики и регулирования ИИ | нет | начальная стадия | частичное соблюдение требований регулирования ИИ и норм этики | соблюдение требований регулирования ИИ и норм этики | обьяснимый ИИ, заслуживающий доверие |
Мырассмотрелирядсхем,поясняющих,какиетипызадачвозникают при построении ИИ-решений. Это позволяет понять, какие ресурсы нужны для построения подобного рода проектов и какие компании могут привлекаться со стороны рынка для реализации ИИ-проектов. Это позволяет говорить о том, какая экосистема поставщиков необходима для построения ИИ-проекта - консультанты, поставщики данных, поставщики программного и аппаратного обеспечения, системные интеграторы для построения внутренней инфраструктуры, поставщики сервисов из облака и т. п.
Заметим, что понятие "типовой ИИ-проект" в той форме, как его рассматривают на рис. 3.1, 3.4, дает неполное впечатление об экосистеме компаний, занятых в создании ИИ-решений.
Действительно, ИИ-компаниями называют также и научные организации, занятые разработкой теоретических вопросов (например, проект на стыке изучения нейробиологии и ИИ или проект по созданию новых архитектур, ведущих к созданию сильного ИИ), и аналитические компании, занятые консалтингом в области построения ИИ-решений, и компании, занятые внедрением ИИ-технологий в те или иные программные приложения, и компании, занятые в области разработки умной робототехники, созданием программных платформ для разработки ИИ-решений, разработкой, созданием приложений с использованием ИИ для нужд разных отраслей, перечень легко продолжить. В широком смысле большинство компаний, занятых в подобных проектах, могут рассматриваться как участники эко-системы по созданию ИИ.
Мы очертили большой круг задач и компаний, их выполняющих. Естественно, существуют сложности оценки вклада отдельных компаний в ИИ-рынок, и перед аналитиками неизбежно возникает задача выработки критерия отнесения последних к ИИ-компаниям и ответа на вопрос - какие компании должны быть отнесены к экосистеме ИИ, а какие фирмы в этот перечень включаться не должны. И, к сожалению, разные аналитики решают эти вопросы по-разному. Как это делают ведущие аналитические агентства, расскажем в следующем разделе.