Опубликован: 30.05.2023 | Доступ: свободный | Студентов: 776 / 222 | Длительность: 16:08:00
Дополнительный материал 1:

Литература

< Лекция 6 || Дополнительный материал 1

Список использованной литературы

  1. Max Simkoff, Andy Mahdavi, November 12, 2019, [Electronic resource]. - Available at: http://blogs.scientificamerican.com/observations/ai-doesnt-actually-exist-yet/ (Accessed: 28.11.2022).
  2. 07.07.2021"Это имитация интеллекта": Константин Воронцов - о настоящем и будущем машинного обучения, [Электронный ресурс]. - Доступно: http://sysblok.ru/interviews/jeto-imitacija-intellekta-konstantin-voroncov-o-nastojashhem-i-budushhem-mashinnogo-obuchenija/ (Дата обращения: 28.11.2022).
  3. Artificial Intelligence. Marco Valtorta, University of South Carolina, 2008.
  4. Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach, 4th US ed." [Electronic resource]. - Available at: http://people. eecs.berkeley.edu/~russell/intro.html (Accessed: 28.11.2022).
  5. Artificial Intelligence Definition, 09 Nov 2020, Article By: Nunung Nurul Qomariyah, Ph.D [Electronic resource]. - Available at: http://international.binus.ac.id/computer-science/2020/11/09/artificial-intelligence-definition/ (Accessed: 28.11.2022).
  6. Introduction to the JAGI Special Issue "On Defining Artificial Intelligence" February 2020. Journal of Artificial General Intelligence Special Issue "On Defining Artificial Intelligence" [Electronic resource]. - Available at: http://www.researchgate.net/publication/339720104_Introduction_ to_the_JAGI_Special_Issue_On_Defining_Artificial_Intelligence_-Commentaries_and_Author's_Response (Accessed: 28.11.2022).
  7. Winston, P. H. (1992). Artificial Intelligence. Third Edition, Addison-Wesley Publishing Company
  8. Nilsson, N. J. (2010). The Quest for Artificial Intelligence. A History of Ideas and Achievements. Cambridge University Press.
  9. Exploring trends that are changing the future. [Electronic resource]. - Available at: http://www.youtube.com/watch?v=21EiKfQYZXc (Accessed: 28.11.2022).
  10. Why Business Leaders Should Think of AI as an Umbrella Term By Michael Watson. [Electronic resource]. - Available at: http://medium. com/opex-analytics/why-business-leaders-should-think-of-ai-as-an-umbrella-term-dba8badc55e4 (Accessed: 28.11.2022).
  11. Infosys. "AMPLIFYING HUMAN POTENTIAL, A Perspective for CIOs" [Electronic resource]. - Available at: http://www.infosys.com/aimaturity/ documents/amplifying-human-potential-cio-report.pdf (Accessed: 28.11.2022).
  12. Основные понятия, используемые в настоящем Федеральном законе [Электронный ресурс]. - Доступно: http://base.garant.ru/73945195/74 1609f9002bd54a24e5c49cb5af953b/ (Дата обращения: 28.11.2022).
  13. ArtificiaI Intelligence: How knowledge is created, transferred, and used Trends in China, Europe, and the United States [Electronic resource]. - Available at: http://www.elsevier.com/?a=827872 (Accessed: 28.11.2022).
  14. "Новый ИИ Gato может выполнять 604 задачи",15:08 / 14 мая, 2022. [Электронный ресурс]. - Доступно: http://www.securitylab.ru/ news/531641.php (Дата обращения: 28.11.2022).
  15. Сергей Карелов, октябрь 22, 2021, "Почему нейронаука зашла в тупик". Опубликован "меморандум Сломана-Паттерсона-Барби" [Электронный ресурс]. - Доступно: http://sergey-57776.medium.com/ %D0%BF%D0%BE%D1%87%D0%B5%D0%BC%D1%83-%D0%BD%D 0%B5%D0%B9%D1%80%D0%BE%D0%BD%D0%B0%D1%83%D0%B A%D0%B0-%D0%B7%D0%B0%D1%88%D0%BB%D0%B0-%D0%B2-%D1%82%D1%83%D0%BF%D0%B8%D0%BA-3f76efd944d2 (Дата обращения: 28.11.2022).
  16. "Artificial Intelligence: Everything You Want to Know" [Electronic resource]. - Available at: http://www.scoro.com/artificial-intelligence-everything-you-want-to-know/ (Accessed: 28.11.2022).
  17. Сергей Карелов, "Наука оказалась бессильной. На Земле появилась новая глобальная квазирелигия" [Электронный ресурс]. - До-ступно: http://zen.yandex.ru/media/the_world_is_not_easy/nauka-okazalas-bessilnoi-63188e0a83193e48af2f9f9b?& (Дата обращения: 28.11.2022).
  18. "A mature Superintelligence by 2050? ", [Electronic resource]. - Available at: http://sustensis.co.uk/evidence-for-maturing-superintelligence-being-quite-near/ (Accessed: 28.11.2022).
  19. Artificial Intelligence: A Framework to Identify Challenges and Guide Successful Outcomes. Cole McCollum Analyst Shriram Ramanathan, Ph.D. Director Lead Analyst: Contributors: Kevin See, Ph.D.VP, Digital Products [Electronic resource]. - Available at: http://web.luxresearchinc. com/hubfs/2020%20Executive%20Summaries/1%20-%202020%20 Executive%20Summaries%20-%20Press%20Versions/AI%20 Framework%20Executive%20Summary%20-%20press.pdf (Accessed: 28.11.2022).
  20. Shane Legg, Marcus Hutter, A Collection of Definitions of Intelligence, [Electronic resource]. - Available at: http://www.researchgate.net/ publication/1895883_A_Collection_of_Definitions_of_Intelligence (Accessed: 28.11.2022).
  21. PETER MORGAN - Towards a General Theory of Intelligence | Rise of AI conference 2019 [Electronic resource]. - Available at: http://www. youtube.com/watch?v=qZf4f8nHKKU (Accessed: 28.11.2022).
  22. ARTIFICIAL INTELLIGENCE: DISTINGUISHING BETWEEN TYPES &DEFINITIONS. Rex Martinez [Electronic resource]. - Available at: http://scholars.law.unlv.edu/cgi/viewcontent.cgi?article=1799&context=nlj (Accessed: 28.11.2022).
  23. Sizing the prize. What's the real value of AI for your business and how can you capitalize? [Electronic resource]. - Available at: http://www.pwc. com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report. pdf (Accessed: 28.11.2022).
  24. Artificial Intelligence: Short History, Present Developments, and Future Outlook Final Report January 2019 Dave Martinez, Co-Lead Andre King Nick Malyska.
  25. DARQ technologies explained: New emerging tech September 16, 2021 [Electronic resource]. - Available at:http://www.cybertalk.org/2021/09/16/darq-technologies-explained/ (Accessed: 28.11.2022).
  26. Electronic Markets on the next convergence, Rainer Alt. [Electronic resource]. - Available at: http://link.springer.com/article/10.1007/s12525-021-00471-6 (Accessed: 28.11.2022).
  27. Artificial Intelligence in Society. [Electronic resource]. - Available at: http://www.oecd-ilibrary.org/sites/8b303b6f-en/index.html?itemId=/ content/component/8b303b6f-en (Accessed: 28.11.2022).
  28. From Intelligence Science to Intelligent Manufacturing. August 2019. Authors: Lihui Wang. KTH Royal Institute of Technology. [Electronic resource]. - Available at: http://www.researchgate.net/ publication/333567029_From_Intelligence_Science_to_Intelligent_ Manufacturing (Accessed: 28.11.2022).
  29. A Brief History of AI from 1940s till Today (Image Credit: Deepkapha.ai ) http://www.reddit.com/r/artificial/comments/d4pm74/a_brief_history_of_ ai_from_1940s_till_today_image/ (Accessed: 28.11.2022).
  30. State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence. March 2018. Authors: Xue-bo Jin, Beijing Technology and Business University, Ting-Li Su Jian-Lei Kong. [Electronic resource]. - Available at: http://www. researchgate.net/publication/323591839_State-of-the-Art_Mobile_ Intelligence_Enabling_Robots_to_Move_Like_Humans_by_Estimating_ Mobility_with_Artificial_Intelligence (Accessed: 28.11.2022).
  31. Artificial Intelligence, Machine Learning, and Deep Learning: Same context, Different concepts [Electronic resource]. - Available at: http:// master-iesc-angers.com/artificial-intelligence-machine-learning-and-deep-learning-same-context-different-concepts/ (Accessed: 28.11.2022).
  32. Machine Learning vs Deep Learning: A non-technical introduction [Electronic resource]. - Available at: http://medium.com/@labai/ machine-learning-vs-deep-learning-a-non-technical-introduction-d2cdce6a953f (Accessed: 28.11.2022).
  33. THE EFFECT OF ARTIFICIAL INTELLIGENCE AND INDUSTRY 4.0 ON ROBOTIC SYSTEMS October 2020, Authors: Hasan Demir, Aksaray ?niversitesi [Electronic resource]. - Available at: http:// www.researchgate.net/publication/344941301_THE_EFFECT_OF_ ARTIFICIAL_INTELLIGENCE_AND_INDUSTRY_40_ON_ROBOTIC_ SYSTEMS (Accessed: 28.11.2022).
  34. Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs. Scruffy, Marvin Minsky In Artificial Intelligence at MIT, Expanding Frontiers, Patrick H. Winston (Ed.), Vol.1, MIT Press, 1990. Reprinted in AI Magazine, Summer 1991 [Electronic resource]. - Available at: http:// web.media.mit.edu/~minsky/papers/SymbolicVs.Connectionist.html (Accessed: 28.11.2022).
  35. Artificial Intelligence and its Role in Near Future. Jahanzaib Shabbir, and Tarique Answer [Electronic resource]. - Available at: http://arxiv.org/ pdf/1804.01396.pdf (Accessed: 28.11.2022).
  36. What Is Semantic Search? [Electronic resource]. - Available at: http:// www.ontotext.com/knowledgehub/fundamentals/what-is-semantic-search/ (Accessed: 28.11.2022).
  37. Semantic Search: What It Is & Why It Matters for SEO Today. [Electronic resource]. - Available at: http://thedigitalcauldron.com/blog/semantic-search-what-it-is-why-it-matters-for-seo-today/ (Accessed: 28.11.2022).
  38. 38. What is an Expert System in AI? by TECHSLANG Updated December 11, 2020 [Electronic resource]. - Available at: http://www.techslang.com/ what-is-an-expert-system-in-ai/ (Accessed: 28.11.2022).
  39. Edward L. Thorndike, American psychologist [Electronic resource]. - Available at: http://www.britannica.com/biography/Edward-L-Thorndike (Accessed: 28.11.2022).
  40. AI, Machine Learning and neural networks explained, 27 July 2020, Sieuwert van Otterloo [Electronic resource]. - Available at: http:// ictinstitute.nl/ai-machine-learning-and-neural-networks-explained/ (Accessed: 28.11.2022).
  41. Valdivino Santiago J?nior, Sep 30, 2021, Deep neural networks: How to define? [Electronic resource]. - Available at: http://towardsdatascience. com/deep-neural-networks-how-to-define-73d87bf36421 (Accessed: 28.11.2022).
  42. Василий Зубарев, Машинное обучение для людей [Электронный ресурс]. - Доступно: http://vas3k.ru/blog/machine_learning/ (Дата обращения: 28.11.2022).
  43. What's the Difference Between Deep Learning Training and Inference? August 22, 2016, by MICHAEL COPELAND [ELECTRONIC RESOURCE]. - AVAILABLE AT: http://blogs.nvidia.com/blog/2016/08/22/ difference-deep-learning-training-inference-ai/ (Accessed: 28.11.2022).
  44. [Electronic resource]. - Available at: http://www.sohu. com/a/295570983_610479 (Accessed: 28.11.2022).
  45. Neural network computing [Electronic resource]. - Available at: http:// www.britannica.com/technology/neural-network (Accessed: 28.11.2022).
  46. AI's next big leap, By Anil Ananthaswamy, 10.14.2020 [Electronic resource]. - Available at: http://knowablemagazine.org/article/ technology/2020/what-is-neurosymbolic-ai (Accessed: 28.11.2022).
  47. A history of evolutionary computation, January 1997, In book: Handbook of Evolutionary Computation (pp. A2.3:1-12) Publisher: Oxford University Authors: Kenneth De Jong, George Mason University, David B. Fogel. [Electronic resource]. - Available at: http://www.researchgate.net/ publication/216300863_A_history_of_evolutionary_computation (Accessed: 28.11.2022).
  48. Основные этапы работы генетического алгоритма | Генетические алгоритмы на Python [Электронный ресурс]. - Доступно: http://www. youtube.com/watch?v=mxK4gq0odTo (Дата обращения: 28.11.2022).
  49. Генетический алгоритм селекции информативных переменных [Элек-тронный ресурс]. - Доступно: http://www.ievbras.ru/ecostat/Kiril/Library/ Book1/Content392/Content392.htm (Дата обращения: 28.11.2022).
  50. Accelerated Neural Evolution through Cooperatively Coevolved Synapses. Authors: Faustino Gomez, NNAISENSE SA, J?rgen Schmidhuber, Risto Miikkulainen http://www.researchgate.net/ publication/220321070_Accelerated_Neural_Evolution_through_ Cooperatively_Coevolved_Synapses (Accessed: 28.11.2022).
  51. Neuroevolution, Dr. Joel Lehman, The University of Texas at Austin, Austin, TX, USA, Prof. Risto Miikkulainen, The University of Texas at Austin, Austin, TX, USA [Electronic resource]. - Available at: http://www. scholarpedia.org/article/Neuroevolution#:~:text=Neuroevolution%20 is%20a%20machine%20learning,biological%20nervous%20systems%20 in%20nature. (Accessed: 28.11.2022).
  52. Agents in Artificial Intelligence [Electronic resource]. - Available at: http://www.geeksforgeeks.org/agents-artificial-intelligence/ (Accessed: 28.11.2022).
  53. Agents and Multi-Agent Systems: A Short Introduction for Power Engineers -Technical Report- Dr. Mevludin Glavic May, 2006 [Electronic resource]. - Available at: http://people.montefiore.uliege.be/glavic/MAS-Intro_Tech_report.pdf (Accessed: 28.11.2022).
  54. Multi-Agent Systems: A Survey, [Electronic resource]. - Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8352646 (Accessed: 28.11.2022).
  55. David Fumo, Jun 15, 2017, Types of Machine Learning Algorithms You Should Know [Electronic resource]. - Available at: http:// towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861 (Accessed: 28.11.2022).
  56. Василий Зубарев, Машинное обучение для людей [Электронный ресурс]. - Доступно: http://eldf.ru/machine-learning-base-article (Дата обращения: 28.11.2022).
  57. Supervised vs Unsupervised vs Reinforcement Learning - The fundamental differences JANUARY 24, 2021 [Электронный ресурс]. - Доступно: http://starship-knowledge.com/supervised-vs-unsupervised-vs-reinforcement (Accessed: 28.11.2022).
  58. What is reinforcement learning? The complete guide, July 5, 2018/ in Deep learning, Machine learning, Reinforcement learning, by B?a?ej Osi?ski and Konrad Budek [Electronic resource]. - Available at: http:// deepsense.ai/what-is-reinforcement-learning-the-complete-guide/ (Accessed: 28.11.2022).
  59. Self-Supervised Learning and Its Applications, Deval Shah, Abhishek Jha, 14th November, 2022 [Electronic resource]. - Available at: http:// neptune.ai/blog/self-supervised-learning (Accessed: 28.11.2022).
  60. Robot Vision vs Computer Vision: What's the Difference? Alex Owen-Hillby Alex Owen-Hill. [Electronic resource]. - Available at: http:// blog.robotiq.com/robot-vision-vs-computer-vision-whats-the-difference (Accessed: 28.11.2022).
  61. Robot Vision vs Computer Vision: What's the Difference? Alex Owen-Hill [Electronic resource]. - Available at: http://blog.robotiq.com/robot-vision-vs-computer-vision-whats-the-difference (Accessed: 28.11.2022).
  62. Deep Learningvs. Traditional Computer VisionNiall O' Mahony, Sean Campbell,Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco Hernandez, Lenka Krpalkova,Daniel Riordan [Electronic resource]. - Available at: http://arxiv.org/ftp/arxiv/papers/1910/1910.13796.pdf (Accessed: 28.11.2022).
  63. Paul Masitow, Jul 27, 2021, Will we ever compute like a brain? [Electronic resource]. - Available at: http://medium.com/ phystechventures/will-we-ever-compute-like-a-brain-5bc7e0ec780e (Accessed: 28.11.2022).
  64. Deep Learning for Computer Vision: A Brief History and Key Trends [Electronic resource]. - Available at: http://analyticsindiamag.com/deep-learning-for-computer-vision-a-brief-history-and-key-trends/ (Accessed: 28.11.2022).
  65. Aqeel Anwar, Jun 7, 2019, Difference between AlexNet, VGGNet, ResNet, and Inception [Electronic resource]. - Available at: http:// towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96 (Accessed: 28.11.2022).
  66. Artificial Intelligence Index Report 2021, Stanford University Stanford, CA 94305.
  67. Wider Vision: Enriching Convolutional Neural Networks via Alignment to External Knowledge Bases March 12, 2021 [Electronic resource]. -Available at: http://www.xuehaoliu.com/gcn-align-explain (Accessed: 28.11.2022).
  68. Adit Deshpande, A Beginner's Guide to Understanding Convolutional Neural Networks [Electronic resource]. - Available at: http:// adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/ (Accessed: 28.11.2022).
  69. A Gentle Introduction to Object Recognition With Deep Learning. by Jason Brownlee on May 22, 2019 [Electronic resource]. - Available at: http://machinelearningmastery.com/object-recognition-with-deep-learning/ (Accessed: 28.11.2022).
  70. 24. What is the difference between a generative and a discriminative algorithm? Electronic resource]. - Available at: http://stackoverflow.com/ questions/879432/what-is-the-difference-between-a-generative-and-a-discriminative-algorithm (Accessed: 28.11.2022).
  71. Prathap Manohar Joshi. Generative VS Discriminative Models. [Electronic resource]. - Available at: http://medium.com/@mlengineer/generative-and-discriminative-models-af5637a66a3 (Accessed: 28.11.2022).
  72. WHATARE GENERATIVE ADVERSARIAL NETWORKS (GANS) Posted on August 22, 2020, by Neeta Hegde in machine learning. [Electronic resource]. - Available at: http://bytes860770954.wordpress. com/2020/08/22/what-are-generative-adversarial-networks-gans/ (Accessed: 28.11.2022).
  73. Salimans, Tim; Goodfellow, Ian; Zaremba, Wojciech; Cheung, Vicki; Radford, Alec & Chen, Xi (2016), Improved Techniques for Training GANs, ar?iv:1606.03498 [cs.LG].
  74. S?bastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On using very large target vocabularyfor neural machine translation.arXiv preprint arXiv:1412.2007, 2014.
  75. Jiajun Zhang and Chengqing Zong. Deep neural networks in machine translation: An overview.IEEE Intell.Syst., 30(5):16-25, 2015
  76. Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, and Adam Coates. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint rXiv:1412.5567, 2014.
  77. An introduction to natural language processing, By M. Tim Jones Published 2017. [Electronic resource]. - Available at: http://developer. ibm.com/articles/cc-cognitive-natural-language-processing/ (Accessed: 28.11.2022).
  78. Deep Learning for Natural Language Processing By Karthiek Reddy Bokka , Shubhangi Hora , Tanuj Jain and 1 more [Electronic resource]. - Available at: http://www.packtpub.com/product/deep-learning-for-natural-language-processing/9781838550295 (Accessed: 28.11.2022).
  79. Text Analysis Asst. Prof. Dr. Supakit Nootyaskool [Electronic resource]. - Available at: http://161.246.38.75/download/babd/chap11.pdf (Accessed: 28.11.2022).
  80. Some Aditya Mandal. Jun 4, 2019. Evolution of Machine Translation. [Electronic resource]. - Available at: http://towardsdatascience.com/ evolution-of-machine-translation-5524f1c88b25 (Accessed: 28.11.2022).
  81. Hariom Gautam, Mar 1, 2020, Word Embedding: Basics http://medium. com/@hari4om/word-embedding-d816f643140 (Accessed: 28.11.2022).
  82. Sojan George. Jun 20, 2020. A Natural Transition from "Bag of words" to "Transformers" - A Recap of NLP's Journey So Far [Electronic resource]. - Available at: http://medium.com/@sojan.george.316/a-natural-transition-from-bag-of-words-to-transformers-a-recap-of-nlps-journey-so-far-32a16b2cf0d1 (Accessed: 28.11.2022).
  83. A Survey on the Application of Recurrent Neural Networks to Statistical Language Modeling, January 2014. Authors: Wim De Mulder, Norwegian University of Science and Technology, Steven Bethard, Marie-Francine Moens, KU Leuven [Electronic resource]. - Available at: http://www. researchgate.net/publication/266204519_A_Survey_on_the_Application_ of_Recurrent_Neural_Networks_to_Statistical_Language_Modeling (Accessed: 28.11.2022).
  84. Dock Koelpin, Recurrent neural networks [Electronic resource]. - Available at: http://morioh.com/p/1bc305d7dbdf (Accessed: 28.11.2022).
  85. Understanding LSTM Networks, Posted on August 27, 2015 [Electronic resource]. - Available at: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ (Accessed: 28.11.2022).
  86. LSTM - нейронная сеть с долгой краткосрочной памятью [Электрон-ный ресурс]. - Доступно: http://neurohive.io/ru/osnovy-data-science/ lstm-nejronnaja-set/ (Дата обращения: 28.11.2022).
  87. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio [Submitted on 3 Jun 2014 (v1), last revised 3 Sep 2014, [Electronic resource]. - Available at: http://arxiv.org/abs/1406.1078 (Accessed: 28.11.2022).
  88. D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural machine translation by jointly learning to align and translate. InICLR
  89. Gal Hever, Apr 17, 2020, Neural Machine Translation with Transformers [Electronic resource]. - Available at: http://galhever.medium.com/ neural-machine-translation-with-transformers-69d4bf918299 (Accessed: 28.11.2022).
  90. Nicholas Asquith, Nov 10, 2019, Understanding Neural Machine Translation: Encoder-Decoder Architecture [Electronic resource]. - Available at: http://towardsdatascience.com/understanding-neural-machine-translation-encoder-decoder-architecture-80f205643ba4 (Accessed: 28.11.2022).
  91. Глубокое обучение с использованием трансферного обучения [Элек-тронный ресурс]. - Доступно: http://www.machinelearningmastery.ru/ deep-learning-using-transfer-learning-cfbce1578659/ (Дата обращения: 28.11.2022).
  92. BERT 101 State Of The Art NLP Model Explained. Published March 2, 2022. Britney Muller [Electronic resource]. - Available at: http:// huggingface.co/blog/bert-101 (Accessed: 28.11.2022).
  93. Submitted on 6 Mar 2021 Perspectives and Prospects on Transformer Architecture for Cross-Modal Tasks with Language and Vision, Andrew Shin, Masato Ishii, Takuya Narihira [Electronic resource]. - Available at: http://arxiv.org/abs/2103.04037 (Accessed: 28.11.2022).
  94. Nick Komissarenko, Jul 24, 2020, "3 метода детектирования объектов c Deep Learning: R-CNN, Fast R-CNN и Faster R-CNN" [Электронный ресурс]. - Доступно: http://medium.com/@bigdataschool/3-%D0%BC% D0%B5%D1%82%D0%BE%D0%B4%D0%B0-%D0%B4%D0%B5%D1% 82%D0%B5%D0%BA%D1%82%D0%B8%D1%80%D0%BE%D0%B2% D0%B0%D0%BD%D0%B8%D1%8F-%D0%BE%D0%B1%D1%8A%D0 %B5%D0%BA%D1%82%D0%BE%D0%B2-c-deep-learning-r-cnn-fast-r-cnn-%D0%B8-faster-r-cnn-acdf6380fd33 (Дата обращения: 28.11.2022).
  95. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2020) An image is worth 16x16 words: Transformers for image recognition at scale
  96. Nagesh Singh Chauhan, How can Transformers be used in Computer Vision? [Electronic resource]. - Available at: http://www.theaidream. com/post/how-can-transformers-be-used-in-computer-vision (Accessed: 28.11.2022).
  97. Google's 'Show and Tell'AI can tell you exactly what's in a photo (almost): System generates captions with nearly 94% accuracy. [Electronic resource]. - Available at: http://www.dailymail.co.uk/sciencetech/article-3804575/Google-s-Tell-AI-tell-exactly-s-photo-generates-captions-nearly-94-accuracy.html (Accessed: 28.11.2022).
  98. Are Vision-Language Transformers Learning Multimodal Representations? A Probing Perspective. Emmanuelle Salin, Badreddine Farah, Stephane Ayache, Benoit Favre [Electronic resource]. - Available at: http://www.aaai.org/AAAI22Papers/AAAI-11931.SalinE.pdf (Accessed: 28.11.2022).
  99. Pretrained models. [Electronic resource]. - Available at: http:// huggingface.co/transformers/v2.2.0/pretrained_models.html (Accessed: 28.11.2022).
  100. "GPT-2 нейросеть от OpenAI. Быстрый старт". [Электронный ре-сурс]. - Доступно: http://habr.com/ru/post/440564/ (Дата обращения: 28.11.2022).
  101. On the Opportunities and Risks of Foundation Models. Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora. [Electronic resource]. - Available at: http://arxiv.org/abs/2108.07258 (Accessed: 28.11.2022).
  102. On the Opportunities and Risks of Foundation Models. Rishi Bommasani. Center for Research on Foundation Models (CRFM) - Stanford University. [Electronic resource]. - Available at: http://www.arxiv-vanity. com/papers/2108.07258/ (Accessed: 28.11.2022).
  103. Foundation Models and the Future of Multi-Modal AI. Jacky Liang. [Electronic resource]. - Available at: http://lastweekin.ai/p/multi-modal-ai (Accessed: 28.11.2022).
  104. Deloitte. Global artificial intelligence industry whitepaper. [Electronic resource]. - Available at: http://thecxlab.io/wp-content/uploads/2020/12/ deloitte-cn-tmt-ai-report-en-190927.pdf (Accessed: 28.11.2022).
  105. The Road to Enterprise Artificial Intelligence: A Case Studies Driven Exploration. Thesis May 2018. Massachusetts Institute of Technology [Electronic resource]. - Available at: http://www.researchgate. net/publication/325404862_The_Road_to_Enterprise_Artificial_ Intelligence_A_Case_Studies_Driven_Exploration (Accessed: 28.11.2022).
  106. Application of deep learning algorithms in geotechnical engineering: a short critical review. December 2021. Authors: Wengang Zhang. Nanyang Technological University, Hongrui Li Yongqin Li, Hong Liu. Chongqing University/ [Electronic resource]. - Available at: http://www.researchgate. net/publication/349365459_Application_of_deep_learning_algorithms_ in_geotechnical_engineering_a_short_critical_review (Accessed: 28.11.2022).
  107. How AI-Powered Search Enables Digital Transformation [Electronic resource]. - Available at: http://lucidworks.com/post/ai-powered-search-enables-digital-transformation/ (Accessed: 28.11.2022).
  108. An Overview of Machine Learning with SAS Enterprise Miner Patrick Hall, Jared Dean, Ilknur Kaynar Kabul, Jorge Silva SAS Institute Inc.
  109. Машинное обучение. [Электронный ресурс]. - Доступно: http://www. hisour.com/machine-learning-42773/ (Дата обращения: 28.11.2022).
  110. Traditional Statistics vs. Artificial Intelligence and Machine Learning. Just because they both deal with data does not mean they are the same. November 10, 2019. By Shahab D. Mohaghegh. Electronic resource]. - Available at: http://jpt.spe.org/traditional-statistics-vs-artificial-intelligence-and-machine-learning#:~:text=While%20 traditional%20statistics%20tests%20hypotheses,it%20fits%20the%20 predetermined%20models. (Accessed: 28.11.2022).
  111. Machine Learning. What it is and why it matters. [Electronic resource]. - Available at: http://www.sas.com/en_us/insights/analytics/machine-learning.html (Accessed: 28.11.2022).
  112. The Lifecycle of an AI Project in 2020: A Detailed Breakdown Iryna Sydorenko. October 19, 2020. [Electronic resource]. - Available at: http://labelyourdata.com/articles/lifecycle-of-an-ai-project-stages-breakdown (Accessed: 28.11.2022).
  113. Гибкое управление проектами и продуктами в Data Science [Электронный ресурс]. - Доступно: http://leands.ai/ru (Дата обращения: 28.11.2022).
  114. How to Evaluate the ROI of Artificial Intelligence. Daniele Delle Case. Apr 08, 2020. [Electronic resource]. - Available at: http://www.signally. ai/blog/how-to-evaluate-the-roi-of-artificial-intelligence (Accessed: 28.11.2022).
  115. What is data labeling for machine learning? [Electronic resource]. - Available at: http://aws.amazon.com/ru/sagemaker/data-labeling/what-is-data-labeling/ (Accessed: 28.11.2022).
  116. What is Operationalizing Machine Learning? [Electronic resource]. - Available at: http://www.iguazio.com/glossary/operationalizing-machine-learning/ (Accessed: 28.11.2022).
  117. Data Science vs Artificial Intelligence - Eliminate your Doubts. [Electronic resource]. - Available at: http://data-flair.training/blogs/data-science-vs-artificial-intelligence/ (Accessed: 28.11.2022).
  118. Developing an Artificial Intelligence Maturity Model for Auditing. June 2021. Authors: Philipp Fukas. Universit?t Osnabr?ck. http://www. researchgate.net/publication/352192517_Developing_an_Artificial_ Intelligence_Maturity_Model_for_Auditing (Accessed: 28.11.2022).
  119. CB Insights reveals 2021 cohort of 100 most-promising AI companies. by Mickey Meece in Artificial Intelligence. on April 8, 2021, [Electronic resource]. - Available at: http://www.techrepublic.com/article/cb-insights-reveals-2021-cohort-of-100-most-promising-ai-companies/ (Accessed: 28.11.2022).
  120. Cognilytica's Classification of the AI Vendor Ecosystem. [Electronic resource]. - Available at: http://www.cognilytica.com/2019/01/16/ cognilyticas-classification-of-the-ai-vendor-ecosystem-overview-and-bottom-3-layers/ (Accessed: 28.11.2022).
  121. Machine Learning and Data Science Project Management from an Agile Perspective: Methods and Challenges. November 2021. In book:Contemporary Challenges for Agile Project Management. Authors: Murat Pasa Uysal Baskent University [Electronic resource]. - Available at: http://www.researchgate.net/publication/355874373_Machine_Learning_ and_Data_Science_Project_Management_From_an_Agile_Perspective_ Methods_and_Challenges (Accessed: 28.11.2022).
  122. The current state of machine intelligence 3.0. Watching the appeal and applications of machine intelligence expand. By Shivon Zilis and James Cham November 7, 2016 [Electronic resource]. - Available at: http:// www.oreilly.com/content/the-current-state-of-machine-intelligence-3-0/ (Accessed: 28.11.2022).
  123. Data and AI Landscape | 2019 [Electronic resource]. - Available at: http://www.kaggle.com/getting-started/155130 (Accessed: 28.11.2022).
  124. Global AI Survey: AI proves its worth, but few scale impact November 22, 2019 | Survey [Electronic resource]. - Available at: http://www.mckinsey. com/featured-insights/artificial-intelligence/global-ai-survey-ai-proves-its-worth-but-few-scale-impact (Accessed: 28.11.2022).
  125. What is considered high-tech industry? [Electronic resource]. - Available at: http://www.seniorcareto.com/what-is-a-high-tech-industry/ (Accessed: 28.11.2022).
  126. AI solutions are boosting value in banking August 10, 2020/in Machine learning /by Oleh Plakhtiy and Dawid Nguyen [Electronic resource]. - Available at: http://deepsense.ai/ai-solutions-are-boosting-value-in-banking/ (Accessed: 28.11.2022).
  127. How AI is Disrupting the Banking Industry [Electronic resource]. - Available at: http://medium.com/@theaiinstitute/how-ai-is-disrupting-the-banking-industry-87a8af9572cc (Accessed: 28.11.2022).
  128. Leya Lakshmanan. Jul 5, 2021. Predictive Maintenance in the Automotive Industry - An Insider's Perspective [Electronic resource]. - Available at: http://medium.com/embitel-technologies/predictive-maintenance-in-the-automotive-industry-an-insiders-perspective-57388d008c9d (Accessed: 28.11.2022).
  129. Artificial Intelligence Reshaping the Automotive Industry [Electronic resource]. - Available at: http://www.futurebridge.com/industry/ perspectives-mobility/artificial-intelligence-reshaping-the-automotive-industry/ (Accessed: 28.11.2022).
  130. Alexandre Villela. Jun 22, 2020. Time-to-Revenue in Self-Driving Cars [Electronic resource]. - Available at: http://medium.com/@ alexandrevillela/time-to-revenue-in-self-driving-cars-a48c9d7340a5 (Accessed: 28.11.2022).
  131. "Яндекс" перенесет разработку беспилотников в Израиль [Электрон-ный ресурс]. - Доступно: http://new-retail.ru/novosti/retail/yandeks_ pereneset_razrabotku_bespilotnikov_v_izrail5173/ (Дата обращения: 28.11.2022).
  132. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Na?ve Bayes Data Fusion. Fu-Chen Chen; Mohammad R. Jahanshahi. [Electronic resource]. - Available at: http://ieeexplore.ieee.org/document/8074762 (Accessed: 28.11.2022).
  133. Using AI To Detect Damage In Nuclear Reactors. By Nefi Alarcon. [Electronic resource]. - Available at: http://developer.nvidia.com/blog/ using-ai-to-detect-damage-in-nuclear-reactors/ (Accessed: 28.11.2022).
  134. Estimation and exploitation of objects' inertial parameters in robotic grasping and manipulation: A survey November 2019 Robotics and Autonomous Systems 124(8). Authors: Nikos Mavrakis. The University of York. Rustam Stolkin. University of Birmingham. [Electronic resource]. - Available at: http://www.researchgate.net/publication/337370106_ Estimation_and_exploitation_of_objects_'_inertial_parameters_in_ robotic_grasping_and_manipulation_A_survey (Accessed: 28.11.2022).
  135. The robots being readied to enter nuclear no-go zones [Electronic resource]. - Available at: http://ec.europa.eu/research-and-innovation/ en/horizon-magazine/robots-being-readied-enter-nuclear-no-go-zones (Accessed: 28.11.2022).
  136. Manchester leading the way in robotics and AI for nuclear industry [Electronic resource]. - Available at: http://www.manchester.ac.uk/ discover/news/manchester-leading-the-way-in-robotics-and-ai-for-nuclear-industry/ (Accessed: 28.11.2022).
  137. A Novel Weakly supervised approach for RGB-D-based Nuclear Waste Object Detection and Categorization. Li Sun, Cheng Zhao, Zhi Yan. [Electronic resource]. - Available at: http://www.manchester.ac.uk/ discover/news/manchester-leading-the-way-in-robotics-and-ai-for-nuclear-industry/ (Accessed: 28.11.2022).
  138. Противопожарную защиту Калининской АЭС доверят искусственному интеллекту. [Electronic resource]. - Available at: http://rg.ru/2021/02/24/ reg-cfo/protivopozharnuiu-zashchitu-kalininskoj-aes-doveriat-iskusstvennomu-intellektu.html (Accessed: 28.11.2022).
  139. Принадлежащая Google британская DeepMind обучила ИИ управ-лению плазмой в термоядерном реакторе. [Electronic resource]. - Available at: http://www.atomic-energy.ru/news/2022/02/18/122085
  140. [Electronic resource]. - Available at: http://www.nature.com/articles/ s41586-021-04301-9
  141. http://www.e3s-conferences.org/articles/e3sconf/pdf/2020/30/e3sconf_ evf2020_02007.pdf (Accessed: 28.11.2022).
  142. "На Нововоронежской АЭС внедряют систему предиктивной анали-тики". [Электронный ресурс]. - Доступно: http://rg.ru/2022/05/20/reg-cfo/na-novovoronezhskoj-aes-vnedriaiut-sistemu-prediktivnoj-analitiki. html (Дата обращения: 28.11.2022).
  143. A. Isaac, S. T. Shorrock, and B. Kirwan, ''Human error in European air trafic management: The HERA project,'' Rel. Eng. Syst. Saf., vol. 75, no. 2, pp. 257-272, Feb. 2002. (Accessed: 28.11.2022).
  144. Healthy Operator 4.0: A Human Cyber-Physical System Architecture for Smart Workplaces. April 2020. Authors: Shengjing Sun. Universidad Polit?cnica de Madrid. Xiaochen Zheng ?cole Polytechnique F?d?rale de Lausanne. Bing Gong. Forschungszentrum J?lich. Joaqu?n Ordieres-Mer?. Universidad Polit?cnica de Madrid [Electronic resource]. - Available at: http://www.researchgate.net/ publication/340435228_Healthy_Operator_40_A_Human_Cyber-Physical_System_Architecture_for_Smart_Workplaces. (Accessed: 28.11.2022).
  145. AI finds a place in nuclear O&M. Jul 20, 2021 [Electronic resource]. - Available at: http://www.reutersevents.com/nuclear/ai-finds-place-nuclear-om (Accessed: 28.11.2022).
  146. Павел Козлов, Техническая академия Росатома: "Предиктивная аналитика позволяет на 70% знать, кого из сотрудников повысят" [Электронный ресурс]. - Доступно: http://www.atomic-energy.ru/ interviews/2022/04/22/124099 (Дата обращения: 28.11.2022).
  147. Grandviewresearch AI healthcare-market [Electronic resource]. - Available at: http://www.grandviewresearch.com/industry-analysis/ artificial-intelligence-ai-healthcare-market (Accessed: 28.11.2022).
  148. Artificial Intelligence in Health Care:Benefits and Challenges of Technologies to Augment Patient Care. Published: Nov 30, 2020. Publicly Released: Nov 30, 2020. [Electronic resource]. - Available at: http:// www.gao.gov/products/gao-21-7sp (Accessed: 28.11.2022).
  149. "Роботы и искусственный интеллект в медицине". О.Л. Фиговский, д.т.н., академик EAS, РИА и РААСН, президент Ассоциации изобретателей Израиля, Глава Департамента науки, технологий и образования Альянса Народов Мира, Израиль; О.Г. Пенский, д.т.н., профессор Пермского государственного национального исследовательского университета, Россия [Электронный ресурс]. - Доступно: http://www. proatom.ru/modules.php?name=News&file=article&sid=9717 (Дата обращения: 28.11.2022).
  150. How AI is being applied to Medical Imaging [Electronic resource]. - Available at: http://www.cognilytica.com/document/infographic-how-ai-is-being-applied-to-medical-imaging/ (Accessed: 28.11.2022).
  151. PTB is increasing its expertise in AI in medicine. [Electronic resource]. - Available at: http://www.ptb.de/cms/en/presseaktuelles/ journalisten/news-press-releases/press-release.html?tx_news_ pi1%5Bnews%5D=10835&tx_news_pi1%5Bcontroller%5D=News&tx_ news_pi1%5Baction%5D=detail&tx_news_pi1%5Bday%5D=15&tx_news_pi1%5Bmonth%5D=2&tx_news_pi1%5Byear%5D=2021&cHash=d 8469059e5871b83cac4261122823780 (Accessed: 28.11.2022).
  152. Rads who use AI will replace rads who don't. Center for Artificial Intelligence in Medicine & Imaging [Electronic resource]. - Available at: RSNA 2017: Rads who use AI will replace rads who don't Stanford University. (Accessed: 28.11.2022).
  153. Analyzing COVID-19 Medical Papers Using Artificial Intelligence: Insights for Researchers and Medical Professionals. by Dmitry Soshnikov,Tatiana Petrova, Vickie Soshnikova, Andrey Grunin. [Electronic resource]. - Available at: (Accessed: 28.11.2022).
  154. Обзор Российских систем поддержки принятия врачебных решений (СППВР) [Электронный ресурс]. - Доступно: http://webiomed.ru/blog/ obzor-rossiiskikh-sistem-podderzhki-priniatiia-vrachebnykh-reshenii/ (Дата обращения: 28.11.2022).
  155. Искусственный интеллект на службе Пентагона [Электронный ре-сурс]. - Доступно: http://zvezdaweekly.ru/news/2020761247-iLf27.html (Дата обращения: 28.11.2022).
  156. DRIVING AN AI ECOSYSTEM [Electronic resource]. - Available at: http:// aicoe.ai/ecosystem/driving-an-ai-ecosystem/ (Accessed: 28.11.2022).
  157. ARTIFICIAL INTELLIGENCE IN JAPAN 2020. Commissioned by the Netherlands Enterprise Agency [Electronic resource]. - Available at: http://www.rvo.nl/sites/default/files/2020/12/Artificial-Intelligence-in-Japan-final-IAN.pdf (Accessed: 28.11.2022).
  158. Want to Work in Artificial Intelligence? 14 AI Careers & Job Outlook [2022] [Electronic resource]. - Available at: http://onlinedegrees. sandiego.edu/artificial-intelligence-jobs/ (Accessed: 28.11.2022).
  159. Top Universities in the World to Study Artificial Intelligence. Shweta Mayekar [Electronic resource]. - Available at: http://www. analyticsinsight.net/top-universities-in-the-world-to-study-artificial-intelligence/ (Accessed: 28.11.2022).
  160. Sizing the prize. What's the real value of AI for your business and how can you capitalise? [Electronic resource]. - Available at: http://www.pwc. com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report. pdf (Accessed: 28.11.2022).
  161. Why Business Leaders Should Think of AI as an Umbrella Term. By Michael Watson. [Electronic resource]. - Available at: http://medium. com/opex-analytics/why-business-leaders-should-think-of-ai-as-an-umbrella-term-dba8badc55e4 (Accessed: 28.11.2022).
  162. Карта искусственного интеллекта России [Электронный ресурс]. - До-ступно: http://airussia.online/#titul (Дата обращения: 28.11.2022).
  163. Report: AI investments see largest year-over-year growth in 20 years [Electronic resource]. - Available at: http://venturebeat.com/ai/report-ai-investments-see-largest-year-over-year-growth-in-20-years/ (Accessed: 28.11.2022).
  164. State of AI 2021 Report. March 9, 2022 [Electronic resource]. - Available at: http://www.cbinsights.com/research/report/ai-trends-2021/ (Accessed: 28.11.2022).
  165. Top 10 artificial intelligence use cases by cumulative revenue worldwide 2016-2025 [Electronic resource]. - Available at: http://statinvestor.com/ data/27309/forecast-of-cumulative-revenue-of-top-10-ai-use-cases/ (Accessed: 28.11.2022).
  166. Artificial Intelligence Sector Overview - Q3 2019 Update [Electronic resource]. - Available at: http://www.venturescanner.com/2019/12/11/ artificial-intelligence-sector-overview-q3-2019-update/ (Accessed: 28.11.2022).
  167. Machine Learning Tops AI Dollars by Sarah Feldman, May 10, 2019 [Electronic resource]. - Available at: http://www.statista.com/ chart/17966/worldwide-artificial-intelligence-funding/ (Accessed: 28.11.2022).
  168. Despite A Pandemic Slump, The AI Sector Remains Hot for Acquirers. June 24, 2021 [Electronic resource]. - Available at: http://www. cbinsights.com/research/artificial-acquisitions-trends-annual-deals/ (Accessed: 28.11.2022).
  169. Over 2,800 AI start-ups received funding from more than 3,700 VC investors during 2020 [Electronic resource]. - Available at: http:// www.globaldata.com/2800-ai-start-ups-received-funding-3700-vc-investors-2020/ (Accessed: 28.11.2022).
  170. US dominates global top five VC funded AI technology companies list in 2019 [Electronic resource]. - Available at: http://www.globaldata.com/ us-dominates-global-top-five-vc-funded-ai-technology-companies-list-in-2019/ (Accessed: 28.11.2022).
  171. Enterprise AI Company Landscape Breakdown 2022 UPDATED ON NOVEMBER 5, 2022. PUBLISHED ON OCTOBER 28, 2020. Written by Cem Dilmegani [Electronic resource]. - Available at: http://research. aimultiple.com/enterprise-ai-companies/ (Accessed: 28.11.2022).
  172. The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. M. MAZHAR RATHORE, (Member, IEEE), SYED ATTIQUE SHAH, DHIRENDRA SHUKLA, ELMAHDI BENTAFAT, AND SPIRIDON BAKIRAS, (Member, IEEE) [Electronic resource]. - Available at: http:// ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9359733 (Accessed: 28.11.2022).
  173. IDC Forecasts Companies to Spend Almost $342 Billion on AI Solutions in 2021 [Electronic resource]. - Available at: http://www.idc.com/ getdoc.jsp?containerId=prUS48127321&utm_medium=rss_feed&utm_ source=alert&utm_campaign=rss_syndication (Accessed: 28.11.2022).
  174. Artificial Intelligence Market [Electronic resource]. - Available at: http:// www.precedenceresearch.com/artificial-intelligence-market (Accessed: 28.11.2022).
  175. AI Market Size to Reach USD 1394.30 Billion by 2029 [Electronic resource]. - Available at: http://www.globenewswire.com/en/news-release/2022/09/13/2514767/0/en/AI-Market-Size-to-Reach-USD-1394-30-Billion-by-2029.html#:~:text=Fortune%20Business%20 Insights%E2%84%A2%20published,USD%20328.34%20billion%20 in%202021. (Accessed: 28.11.2022).
  176. Artificial Intelligence Market [Electronic resource]. - Available at: http:// www.alliedmarketresearch.com/artificial-intelligence-market" type="url" /> (Accessed: 28.11.2022).
  177. IDC: Worldwide AI Spending Grew Over 20% in 2021, will Reach $450B in 2022. September 16, 2022, by Jaime Hampton [Electronic resource]. - Available at: http://www.enterpriseai.news/2022/09/16/idc-worldwide-ai-spending-grew-over-20-in-2021-will-reach-450b-in-2022/ (Accessed: 28.11.2022).
  178. Sizing the AI Software Market: Not as big as Investors Expect but Still $37 Billion By 2025 Andrew Bartels, VP, Principal Analyst. Mike Gualtieri, VP, Principal Analyst. DEC 10, 2020 [Electronic resource]. - Available at: http://www.forrester.com/blogs/sizing-the-ai-software-market-not-as-big-as-investors-expect-but-still-37-billion-by-2025/ (Accessed: 28.11.2022).
  179. Tractica: the global revenue of AI software will reach 126 billion US dollars in 2025, focusing on consumer, financial services and other applications [Electronic resource]. - Available at: http://www.gsas.edu. hk/tractica-the-global-revenue-of-ai-software-will-reach-126-billion-us-dollars-in-2025-focusing-on-consumer-financial-services-and-other-applications/ (Accessed: 28.11.2022).
  180. Revenues from the artificial intelligence software market worldwide from 2018 to 2025, by region [Electronic resource]. - Available at: http://www. statista.com/statistics/721747/worldwide-artificial-intelligence-market-by-region/ (Accessed: 28.11.2022).
  181. The impact of artificial intelligence on employment before and during pandemic: A comparative analysis: G Abuselidze and L Mamaladze 2021 J. Phys.: Conf. Ser. 1840 012040
  182. Tobias Bohnhoff. Machine Learning as a Service - The Top Cloud Platform and AI Vendors [Electronic resource]. - Available at: http:// medium.com/appanion/machine-learning-as-a-service-the-top-cloud-platform-and-ai-vendors-2df45d51374d (Accessed: 28.11.2022).
  183. How AWS Nudged Out IBM, Google & Microsoft From The Cloud AI Space [Electronic resource]. - Available at: http://analyticsindiamag. com/how-aws-nudged-out-ibm-google-microsoft-from-the-cloud-ai-space/ (Accessed: 28.11.2022).
  184. Omdia ranks top AI and ML development platform providers. [Electronic resource]. - Available at: http://www.dqindia.com/omdia-ranks-top-ai-ml-development-platform-providers/ (Accessed: 28.11.2022).
  185. AI Computing Chip Analysis for Software-Defined Vehicles February 7, 2022 [Electronic resource]. - Available at: http://ecotron.ai/blog/ ai-computing-chip-analysis-for-software-defined-vehicles/ (Accessed: 28.11.2022).
  186. NEUROMORPHIC COMPUTING. Concepts, actors, applications, market and future trends. April 2020. PRELIMINARY REPORT. Universidad Polit?cnica de Madrid. Taygun Bulut Durmaz. Dr. Guillermo Velasco. Prof. Gonzalo Le?n
  187. AI: Where's The Money? What the market for AI hardware might look like in 2025. BY: KURT SHULER [Electronic resource]. - Available at: http:// semiengineering.com/ai-wheres-the-money/ (Accessed: 28.11.2022).
  188. AI Chips: What They Are and Why They Matter. Saif M. Khan. April 2020 [Electronic resource]. - Available at: http://cset.georgetown.edu/ publication/ai-chips-what-they-are-and-why-they-matter/ (Accessed: 28.11.2022).
  189. Artificial Intelligence (Chipsets) Market. [Electronic resource]. - Available at: http://www.marketsandmarkets.com/PressReleases/ai-chipset.asp (Accessed: 28.11.2022).
  190. Global Deep Learning Chipset Market By type (GPU, ASIC, CPU, FPGA and Others) By Technology (System-on-chip (SoC), System-in-package (SIP) and Multi-chip module and Others) By End User (Consumer Electronics, Industrial, Aerospace & Defense, Healthcare, Automotive and Others) By Region, Industry Analysis and Forecast, 2019 - 2025 [Electronic resource]. - Available at: http://www.kbvresearch.com/deep-learning-chipset-market/ (Accessed: 28.11.2022).
  191. NEUROMORPHIC COMPUTING. Concepts, actors, applications, market and future trends. April 2020. v.1.0. PRELIMINARY REPORT. Universidad Polit?cnica de Madrid. Taygun Bulut Durmaz. Dr. Guillermo Velasco. Prof. Gonzalo Le?n
  192. Neuromorphic artificial intelligence systems. Dmitry Ivanov, Aleksandr Chezhegov, Mikhail Kiselev, Andrey Grunin and Denis Larionov. [Electronic resource]. - Available at: http://www.frontiersin.org/ articles/10.3389/fnins.2022.959626/full (Accessed: 28.11.2022).
  193. The Global AI Index [Electronic resource]. - Available at: http://www. tortoisemedia.com/intelligence/global-ai/ (Accessed: 28.11.2022).
  194. THE AI INDEX REPORT. Measuring trends in Artificial Intelligence [Electronic resource]. - Available at: http://aiindex.stanford.edu/report/ (Accessed: 28.11.2022).
  195. Сергей Карелов. Один из важнейших отчетов по ИИ [Элек-тронный ресурс]. - Доступно: http://sergey-57776.medium. com/%D0%BE%D0%B4%D0%B8%D0%BD-%D0%B8%D0%B7-%D0 %B2%D0%B0%D0%B6%D0%BD%D0%B5%D0%B9%D1%88%D0%B 8%D1%85-%D0%BE%D1%82%D1%87%D0%B5%D1%82%D0%BE%D0%B2-%D0%BF%D0%BE-%D0%B8%D0%B8-abad88ca58c8 (Дата обращения: 28.11.2022).
  196. GLOBALAI VIBRANCY TOOL Who's leading the global AI race? [Electronic resource]. - Available at: http://aiindex.stanford.edu/vibrancy/ (Accessed: 28.11.2022).
  197. US-China AI Competition | Who is Winning? [Electronic resource]. - Available at: http://ru.knoema.com/infographics/sxovfdc/us-china-ai-competition-who-is-winning (Accessed: 28.11.2022).
  198. GovernmentAI ReadinessIndex 2021 [Electronic resource]. - Available at: http://static1.squarespace.com/static/58b2e92c1e5b6c828058484e/t/ 61ead0752e7529590e98d35f/1642778757117/Government_AI_ Readiness_21.pdf (Accessed: 28.11.2022).
  199. Analysis Report of The World's Most Influential AI Scholar (AI 2000) In 20222 [Electronic resource]. - Available at: http://static.aminer.cn/misc/ pdf/AI200022.pdf?fbclid=IwAR3143DQI_4g58xIVdUDTpAomM5xQrkX7-PHodPHnmkBu1BXgKB713yAa_c (Accessed: 28.11.2022).
  200. Оборонный бюджет США-2023: в приоритете - искусственный интел-лект 29 марта, Новые Известия [Электронный ресурс]. - Доступно: http://newizv.ru/news/army/29-03-2022/oboronnyy-byudzhet-ssha-2023-v-prioritete-iskusstvennyy-intellekt (Дата обращения: 28.11.2022).
  201. China's Technology Transfer Strategy:How Chinese Investments in Emerging Technology Enable A Strategic Competitor to Access the Crown Jewels of U.S. InnovationUpdated with 2016 and 2017 DataUNCLASSIFIEDMichael Brown and Pavneet SinghJanuary [Electronic resource]. - Available at: http://admin.govexec.com/media/ diux_chinatechnologytransferstudy_jan_2018_(1).pdf (Accessed: 28.11.2022).
  202. China's ambitions in artificial intelligence. [Electronic resource]. - Available at: http://www.europarl.europa.eu/RegData/etudes/ ATAG/2021/696206/EPRS_ATA(2021)696206_EN.pdf (Accessed: 28.11.2022).
  203. The next frontier for AI in China could add $600 billion to its economy June 7, 2022 | Report [Electronic resource]. - Available at: http://www. mckinsey.com/capabilities/quantumblack/our-insights/the-next-frontier-for-ai-in-china-could-add-600-billion-to-its-economy (Accessed: 28.11.2022).
  204. The Global Artificial Intelligence Landscape. December 4, 2019. Snowdrop Solution [Electronic resource]. - Available at: http://www. snowdropsolution.com/machine-learning/a-study-the-global-artificial-intelligence-landscape/ (Accessed: 28.11.2022).
  205. Artificial Intelligence Index Report 2021 - Stanford University [Electronic resource]. - Available at: 2021-AI-Index-Report_Master.pdf (Accessed: 28.11.2022).
  206. Сергей Карелов: Россия на карте мира ИИ. [Электронный ресурс]. - Доступно: http://www.finversia.ru/obsor/blogs/sergei-karelov-rossiya-na-karte-mira-ii-108171 (Дата обращения: 28.11.2022).
  207. Harnessing artificial intelligence (AI) to increase wellbeing for all: The case for a new technology diplomacy Claudio Feijoo, Youngsun Kwon, Johannes M. Bauer, Erik Bohlin, Bronwyn Howell
  208. Китайский ИИ на страже порядка: автоматизация цензуры. 09.01.2022 [Электронный ресурс]. - Доступно: http://sysblok.ru/ society/kitajskij-ii-na-strazhe-porjadka-avtomatizacija-cenzury/ (Дата обращения: 28.11.2022).
  209. Сергей Карелов. Все под наблюдением и счастливы этим [Электронный ресурс]. - Доступно: http://zen.yandex.ru/media/ the_world_is_not_easy/vse-pod-nabliudeniem-i-schastlivy-etim-62dfe2c948dd720f08393b3d?& (Дата обращения: 28.11.2022).
  210. The Artificial Intelligence Top 50. [Electronic resource]. - Available at: http://www.beauhurst.com/blog/ai-startup-companies/ (Accessed: 28.11.2022).
  211. CANADA'S ADVANTAGE FOR AI: AN ECOSYSTEM FUELLED BY TALENTAND INNOVATION Karicia Quiroz, Research Manager & Anam Elahi, Business Analyst, Invest in Canada [Electronic resource]. - Available at: http://www.investcanada.ca/blog/canadas-advantage-ai-ecosystem-fuelled-talent-and-innovation (Accessed: 28.11.2022).
  212. Искусственный интеллект (рынок России) Tadviser [Электронный ресурс]. - Доступно: http://www.tadviser.ru/index.php/%D0%A1%D1 %82%D0%B0%D1%82%D1%8C%D1%8F:%D0%98%D1%81%D0%B A%D1%83%D1%81%D1%81%D1%82%D0%B2%D0%B5%D0%BD% D0%BD%D1%8B%D0%B9_%D0%B8%D0%BD%D1%82%D0%B5%-D0%BB%D0%BB%D0%B5%D0%BA%D1%82_(%D1%80%D1%8B%D0 %BD%D0%BE%D0%BA_%D0%A0%D0%BE%D1%81%D1%81%D0%B 8%D0%B8) (Дата обращения: 28.11.2022).
  213. "Исследования в сфере искусственного интеллекта" Tadviser [Элек-тронный ресурс]. - Доступно: http://www.tadviser.ru/index.php/%D0% A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%98%D1%81% D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D0% BD%D0%B8%D1%8F_%D0%B2_%D1%81%D1%84%D0%B5%D1%80-%D0%B5_%D0%B8%D1%81%D0%BA%D1%83%D1%81%D1%81%D1 %82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE _%D0%B8%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D 0%BA%D1%82%D0%B0 (Дата обращения: 28.11.2022).
  214. Стала известна структура расходов федерального проекта "Искус-ственный интеллект" 12 февраля 2021 г. [Электронный ресурс]. - Доступно: http://www.novostiitkanala.ru/news/detail.php?ID=151540 (Дата обращения: 28.11.2022).
  215. CNews от 09 февраля 2021 "Замминистра экономического развития Оксана Тарасенко в интервью CNews - о развитии искусственного интеллекта в России" [Электронный ресурс]. - Доступно: http://www. cnews.ru/articles/2021-02-09_zamministra_ekonomicheskogo_razvitiya (Дата обращения: 28.11.2022).
  216. Минпромторг России определился с критериями выбора ИИ-про-ектов для господдержки. 06.12.2021 [Электронный ресурс]. - До-ступно: http://www.digital-energy.ru/2021/12/06/industry/%D0%BC% D0%B8%D0%BD%D0%BF%D1%80%D0%BE%D0%BC%D1%82% D0%BE%D1%80%D0%B3-%D1%80%D0%BE%D1%81%D1%81%D 0%B8%D0%B8-%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D-0%B5%D0%BB%D0%B8%D0%BB%D1%81%D1%8F-%D1%81-%D0%BA%D1%80%D0%B8/ (Дата обращения: 28.11.2022).
  217. Шесть исследовательских центров по искусственному интеллек-ту получат федеральные гранты до 1 млрд рублей [Электронный ресурс]. - Доступно: http://www.comnews.ru/content/216759/2021-10-05/2021-w40/shest-issledovatelskikh-centrov-iskusstvennomu-intellektu-poluchat-federalnye-granty-do-1-mlrd-rubley (Дата обращения: 28.11.2022).
  218. Worldwide Artificial Intelligence Spending Guide [Electronic resource]. - Available at: http://www.idc.com/getdoc. jsp?containerId=prEUR247642121 (Accessed: 28.10.2022).
  219. Как меняется рынок ИИ в России [Electronic resource]. - [Элек-тронный ресурс]. - Доступно: http://rspectr.com/infographics/kak-menyaetsya-rynok-ii-v-rossi (Дата обращения: 28.11.2022).
  220. Исследование: "Яндекс" и Сбербанк оказались лидерами по искус-ственному интеллекту в России [Электронный ресурс]. - Доступно: http://tass.ru/ekonomika/6510400 (Дата обращения: 28.11.2022).
  221. ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ. Текущее состояние в Рос-сии и мире. Cтратегия России Аналитический сборник Июнь 2019 г. [Электронный ресурс]. - Доступно: http://vk.com/doc-58310134_538769295?hash=GkWrAkcpvavMdoJZX6vkZ4nFGlhBrEQzX NTkXJZLz18&dl=e36ZwbXwQZjZq00WAYDm3ReIdDAsqYClCuqp4xh7G 2g (Дата обращения: 28.11.2022).
  222. 26 декабря, 2022 В Сбере заявили, что внедрение ИИ принесло ему в 2022 году более 230 млрд рублей [Электронный ресурс]. - Доступно: http://tass.ru/ekonomika/16691393 (Дата обращения: 28.12.2022).
  223. "Ростелеком" прокачает искусственный интеллект [Электронный ресурс]. - Доступно: http://www.comnews.ru/content/203653/2019-12-19/2019-w51/rostelekom-prokachaet-iskusstvennyy-intellekt (Дата обращения: 28.11.2022).
  224. "Искусственный интеллект "Лаборатории Касперского" регистрирует до 33% новых мобильных угроз" 29 июня 2021, [Электронный ресурс]. - Доступно: (Дата обращения: 28.11.2022). http://iz.ru/1185986/2021-06-29/iskusstvennyi-intellekt-laboratorii-kasperskogo-registriruet-do-33-novykh-mobilnykh-ugroz (Accessed: 28.11.2022)
  225. Everest Group Recognizes ABBYY as a Leader in Intelligent Document Processing Products PEAK Matrix Assessment 2020 for Second Consecutive Year (англ.). Business Wire. Дата обращения: 27 мая 2020. Архивировано 10 сентября 2020 года.
  226. Карта искусственного интеллекта России v1.21.02 [Электронный ресурс]. - Доступно: http://airussia.online/#titul (Дата обращения: 28.11.2022).
  227. "Как развивается сфера искусственного интеллекта в России" 06.08.2021 [Электронный ресурс]. - Доступно: http://zanauku.mipt. ru/2021/08/06/13782/ (Дата обращения: 28.11.2022).
  228. Artificial Intelligence Startups in Russia [Electronic resource]. - Available at: http://tracxn.com/explore/Artificial-Intelligence-Startups-in-Russia (Accessed: 28.11.2022).
  229. Александр Емельяненков, "Фонд перспективных исследований бросает вызов американской DARPA", Российская газета, 12 фев-раля 2021 года. 12, 2021, http://rg.ru/2021/02/12/fond-perspektivnyh-issledovanij-brosaet-vyzov-amerikanskoj-darpa.html (Accessed: 28.11.2022).
  230. Андрей Гончаров, "Особенности организации инновационной дея-тельности в МО России", Национальная Оборона, 23 марта, 2020, [Электронный ресурс]. - Доступно: http://2009-2020.oborona.ru/ includes/periodics/armedforces/2020/0323/103628949/print.shtml (Дата обращения: 28.11.2022).
  231. "ФПИ предложил Минобороны стандартизировать искусственный ин-теллект". 23 Марта 2018. [Электронный ресурс]. - Доступно: http:// sudostroenie.info/novosti/22431.html (Дата обращения: 28.11.2022).
  232. "Искусственный интеллект - средство, а не самоцель". Алексей Заквасин. [Электронный ресурс]. - Доступно: http://russian.rt.com/russia/article/686954-tehnopolis-era-intervyu (Дата обращения: 28.11.2022).
  233. "Интеллектуальный прорыв". 9 августа 2021. [Электронный ресурс]. - Доступно: http://dzen.ru/media/id/5ddfbc8b9515ee00ac9e370a/ intellektualnyi-proryv-61111f217a62e47685a720ab (Дата обращения: 28.11.2022).
  234. Военное обозрение. Искусственный интеллект в российской армии. 22 ноября 2021 [Электронный ресурс]. - Доступно: http://topwar. ru/189298-iskusstvennyj-intellekt-v-rossijskoj-armii.htm (Дата обраще-ния: 28.11.2022).
  235. "Ставка на искусственный интеллект: Россия выходит в лидеры рынка беспилотной авиации". 12.11.2021 [Электронный ресурс]. - Доступно: (Дата обращения: 28.11.2022). http://lv.sputniknews. ru/20211112/stavka-na-iskusstvennyy-intellekt-rossiya-vykhodit-v-lidery-rynka-bespilotnoy-aviatsii-19185396.html (Дата обращения: 28.11.2022).
  236. "Новый беспилотник от компании ZALAAERO для мониторинга трубопроводов, и не только". [Электронный ресурс]. - Доступно: [Electronic resource]. http://neftegaz.ru/news/aviatehnika/198524-novyy-bespilotnik-ot-kompanii-zala-aero-dlya-monitoringa-truboprovodov-i-ne-tolko/ (Дата обращения: 28.11.2022).
  237. Беспилотный комплекс "ZALA ЛАНЦЕТ" [Электронный ресурс]. - Доступно: http://kalashnikovgroup.ru/media/bespilotnye-letatelnye-apparaty/bespilotnyy-kompleks-zala-lantset-v-deystvii (Дата обращения: 28.11.2022)
  238. Юрий Борисов провёл совещание о развитии технологий искусствен-ного интеллекта в интересах обороны. 13 апреля 2021 [Электронный ресурс]. - Доступно: http://government.ru/news/41953/ (Дата обраще-ния: 28.11.2022).
  239. Key Chinese Think Tank's "AI Security White Paper" [Electronic resource]. - Available at: http://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-key-chinese-think-tanks-ai-security-white-paper-excerpts/ (Accessed: 28.11.2022).
  240. Artificial Intelligence Risk & Governance [Electronic resource]. - Available at: http://ai.wharton.upenn.edu/artificial-intelligence-risk-governance/ (Accessed: 28.11.2022).
  241. On The Role of Knowledge Graphs in Explainable AI. F. L?cu?. Published 2019. [Electronic resource]. - Available at: http://www.semanticscholar. org/paper/On-The-Role-of-Knowledge-Graphs-in-Explainable-AI-L%C3%A9cu%C3%A9/a8b43f965dbecbd1c830a288a4ce0c6055cd243a (Accessed: 28.11.2022).
  242. Measuring algorithmically infused societies. Claudia Wagner, Markus Strohmaier, Alexandra Olteanu, Emre K?c?man, Noshir Contractor, Tina Eliassi-Rad. [Electronic resource]. - Available at: http://www. networkscienceinstitute.org/publications/measuring-algorithmically-infused-societies (Accessed: 28.11.2022).
  243. Сергей Карелов. Октябрь 2022, "Цена исхода в Метаверс опреде-лилась" [Электронный ресурс]. - Доступно: http://sergey-57776. medium.com/%D1%86%D0%B5%D0%BD%D0%B0-%D0%B8%D1 %81%D1%85%D0%BE%D0%B4%D0%B0-%D0%B2-%D0%BC% D0%B5%D1%82%D0%B0%D0%B2%D0%B5%D1%80%D1%81-%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0 %B8%D0%BB%D0%B0%D1%81%D1%8C-1a6facb657b0 (Дата обра-щения: 28.11.2022).
  244. Breakingviews - Hadas: "Zero privacy" is both blessing and curse. By Edward Hadas. [Electronic resource]. - Available at: http://www.reuters. com/article/us-technology-privacy-breaakingviews-idUKKCN1SS1OS (Accessed: 28.11.2022).
  245. Сергей Карелов, "Китайская комната наоборот". [Электронный ресурс]. - Доступно: http://sergey-57776.medium.com/%D0%BA% D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B0%D1 %8F-%D0%BA%D0%BE%D0%BC%D0%BD%D0%B0%D1%82%D0 %B0-%D0%BD%D0%B0%D0%BE%D0%B1%D0%BE%D1%80%D0% BE%D1%82-d7878636bf0b (Дата обращения: 28.11.2022).
  246. Artificial Intelligence and Nudging. October 2020. Authors: Julia M. Puaschunder. Columbia Universit The Political Philosophy of AI. [Electronic resource]. - Available at: http://www.researchgate.net/ publication/346274110_Artificial_Intelligence_and_Nudging (Accessed: 28.11.2022).
  247. What is the AI Awakening and How Will It Affect Your Business? November 19, 2021. By Xanat Hernandez. [Electronic resource]. - Available at: http://merage.uci.edu/news/2021/11/What-is-the-AI-Awakening-and-How-Will-It-Affect-Your-Business.htm (Accessed: 28.11.2022).
  248. Miraikan - the National Museum of Emerging Science and Innovation / Fumiya Urushibata, Yoshiyasu Watanabe, Ryu Miyata, Ayuko Sakurai, Atsushi Ozawa and Mizuki Kawano. [Electronic resource]. - Available at: http://www.miraikan.jst.go.jp/en/resources/docs/AIMapEN.pdf" type="url" /> (Accessed: 28.11.2022).
  249. AI Will Transform Financial Services Industry within Two Years, Survey Finds. [Electronic resource]. - Available at: http://www.weforum.org/ press/2020/02/ai-will-transform-financial-services-industry-within-two-years-survey-finds/ (Accessed: 28.11.2022).
  250. Михаил Яковлев, Алексей Егоров. "Умильный, но неотвратимый ИИ". [Электронный ресурс]. - Доступно: http://alephegg.narod.ru/ Survay/TachingAI.htm (Дата обращения: 28.11.2022).
  251. Elon Musk's brain chip firm Neuralink lines up clinical trials in humans [Electronic resource]. - Available at: http://www.theguardian.com/ technology/2022/jan/20/elon-musk-brain-chip-firm-neuralink-lines-up-clinical-trials-in-humans (Accessed: 28.11.2022).
  252. Measuring trends in Artificial Intelligence. [Electronic resource]. - Available at: http://aiindex.stanford.edu/ai-index-report-2021/ (Accessed: 28.11.2022).
  253. Bernd Carsten Stahl.Artificial Intelligence for a Better Future.An Ecosystem Perspective on the Ethics ofAI and Emerging Digital Technologies. Editors-in-Chief Doris Schroeder, Centre for Professional Ethics, University of Central Lancashire, Preston, Lancashire, UK Konstantinos Iatridis, School of Management, University of Bath, Bath, UK.
  254. AI Weekly: Meta analysis shows AI ethics principles emphasize human rights. Seth Colaner January 17, 2020. [Electronic resource]. - Available at: http://venturebeat.com/ai/ai-weekly-meta-analysis-shows-ai-ethics-principles-emphasize-human-rights/ (Accessed: 28.11.2022).
  255. How safe is our reliance on AI, and should we regulate it? Kevin LaGrandeur. 06 October 2020. [Electronic resource]. - Available at: http://link.springer.com/article/10.1007/s43681-020-00010-7 (Accessed: 28.11.2022).
  256. 5 ways AI and ML will improve cybersecurity in 2022. Louis Columbus. January 19, 2022 [Electronic resource]. - Available at: http://venturebeat.com/2022/01/19/5-ways-ai-and-ml-will-improve-cybersecurity-in-2022/ (Accessed: 28.11.2022).
  257. Multiexperience. [Electronic resource]. - Available at: http://www. walkme.com/glossary/multiexperience/ (Accessed: 28.11.2022).
  258. Composite AI in Action with ELEMENT. By Adam Krolak. [Electronic resource]. - Available at: http://blackswantechnologies.ai/media-room/composite-ai/#:~:text=Composite%20AI%20is%20a%20 breakthrough,deep%20learning%2C%20and%20other%20methods. (Accessed: 28.11.2022).
  259. The State of Responsible AI: 2021 [Electronic resource]. - Available at: http://www.fico.com/en/latest-thinking/market-research/state-responsible-ai-2021 (Accessed: 28.11.2022).
  260. Physics-informed machine learning. George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang & Liu Yang [Electronic resource]. - Available at: http://www.nature.com/articles/s42254-021-00314-5.pdf (Accessed: 28.11.2022).
  261. Electric and Autonomous Vehicles: The Future Is Now. With the right trade-offs and strategic partnerships, original equipment manufacturers still have a chance to keep up in the race for electric and autonomous mobility. By Klaus Stricker, Tom Wendt, Wilko Stark, Mark Gottfredson, Raymond Tsang, and Michael Schallehn. October 29, 2020. [Electronic resource]. - Available at: http://www.bain.com/insights/electric-and-autonomous-vehicles-the-future-is-now/ (Accessed: 28.11.2022).
  262. Benedict Neo. Apr 13, 2020. ARTIFICIAL GENERAL INTELLIGENCE. Top 4 AI companies leading in the race towards Artificial General Intelligence. [Electronic resource]. - Available at: http:// towardsdatascience.com/four-ai-companies-on-the-bleeding-edge-of-artificial-general-intelligence-b17227a0b64a (Accessed: 28.11.2022).
  263. Bio-Digital Fusion. Discussion in 'Science and Technology' started by OddTrader, Aug 6, 2017. [Electronic resource]. - Available at: http://www.elitetrader.com/et/threads/bio-digital-fusion.311938/ (Accessed: 28.11.2022).
< Лекция 6 || Дополнительный материал 1