Добрый день. Подскажите пожалуйста, я прошел ваш курс Введение в линейную алгебру: Информация, - сдал экзамен и у меня высветилось окно, где необходимо оформить доставку сертификата. Однако, я случайно закрыл это окно и теперь не могу найти этот подраздел, чтобы оформить доставку. Где можно это найти? |
Матричная запись системы. Метод Гаусса. Метод Крамера. Матричный способ
Правило Крамера
Основные задачи изучения системы (3.1), "лекции 3" :
- Выяснить, является ли система (3.1) совместной или несовместной.
- Если система (3.1) совместна, то выяснить, является ли она определенной и найти решения.
Далее рассмотрим, в частности, систему трех уравнений первой степени с тремя неизвестными.
![]() |
( 4.2) |
Составим из коэффициентов при неизвестных системы (4.2) определитель этой системы

Умножим обе части первого уравнения почленно на алгебраическое дополнение А11 элемента а11, второе уравнение - на алгебраическое дополнение А21 элемента а21, а третье - на алгебраическое дополнение А31 элемента а31.

Сложим все три полученных уравнения, умножив предварительно на соответствующие алгебраические дополнения, получим
![]() |
( 4.3) |
Коэффициенты при y и z в силу свойства определителя (см.
"лекц. 1"
, теорема 2) равны нулю, а коэффициент при х на основании тех же свойств (см.
"лекц. 1"
, теорема 1) равен , т.е.
, поэтому равенство (4.3) примет вид:
![]() |
( 4.4) |
![]() |
( 4.5) |
Заметим, что определитель получается из определителя
путем замены коэффициентов а11, а21, а31 при неизвестном х свободными членами или замены первого столбца
коэффициентов при искомом х столбцом свободных членов. Аналогично получаются другие равенства:
![]() |
( 4.6) |

Определители и
получают из определителя системы
заменой второго и третьего столбцов
коэффициентов при y и z столбцом свободных членов.
Рассмотрим следующие случаи.
-
. Тогда из равенств (4.4) и (4.5) находим решение системы (2) как
которые называют формулами Крамера.( 4.7) -
. Тогда по крайней мере один из
,
или
отличен от нуля и система (4.2) не имеет решения (система несовместна), что можно показать. Пусть, например,
. Тогда равенство из (4.4) получаем
или
, что невозможно.
-
и
. Тогда система (4.2) либо не имеет решения, либо имеет бесконечное множество решений.
Пример 1. Решить систему

Решение. Вычислим все определители.

Так как , то данная система имеет единственное решение, которое найдем по формулам Крамера (4.7):

Пример 2. Решить систему

Решение. Вычислим определители

т.е. система решений не имеет (случай 2)
Пример 3. Решить систему

Решение. Нетрудно убедиться в том, что и
. Данная система не имеет решений, так как первое и третье уравнения противоречивы. Если умножить первое уравнение на 3 и вычесть из полученного уравнение третье, то придем к ложному равенству 0 = 3.
Пример 4. Решить систему

Решение. Нетрудно убедиться в том, что и
. Так как второе уравнение получается из первого умножением на 2, то данная система равносильна системе двух уравнений относительно трех неизвестных


