Опубликована: 22.04.2015 | Уровень: для всех | Стоимость: 490.00 руб. | Длительность: 
Практикум по решению задач по теории графов и связанным с ними алгоритмам.
Даются основные понятия теории графов, решаются оптимизационные задачи на графах, рассказывается об алгоритмах поиска и матричных методах анализа графов.

План занятий

ЗанятиеЗаголовок <<Дата изучения
Лекция 1
Логика предикатов. Графы, общие определения
Кванторы всеобщности и существования. Связанные переменные. Область действия квантора. Эквивалентные соотношения в логике предикатов. Чистая логика предикатов и прикладные логики предикатов. Понятия графа. Классификация графов: по наличию ориентирования ребер (неориентированный и ориентированный графы), по наличию кратности ребер (простой граф и мультиграф). Отношение смежности между вершинами, матрица смежности. Отношение инцидентности между вершинами и ребрами. Степень вершины. Изолированные вершины, висячие вершины. Пустой граф, полный граф.
Оглавление
    -
    Лекция 2
    Теория графов. Основные понятия
    Матрица смежности, степень вершины. Подграф и часть графа. Звезда вершины графа. Полный граф. Клика. Максимальный и минимальный (относительно некторого свойства) подграф. Изоморфизм графов. Неориентированные графы. Путь, цепь, простая цепь, цикл. Связанные вершины. Связный граф. Компоненты связности. Длина пути. Расстояние между вершинами в связном графе. Аксиомы метрики (расстояния).
    Оглавление
      -
      Лекция 3
      Теория графов. Основные понятия (продолжение)
      Радиус графа, центры графа. Эйлеров обход. Задача о кенигсбергских мостах. Алгоритм построения эйлерова цикла. Задача о гамильтоновом обходе (задача коммивояжера). Ориентированные графы (орграфы). Ориентированный путь, ориентированный цикл. Достижимость. Виды связности: сильная связность, односторонняя связность, слабая связность. Компонента сильной связности. Конденсация, граф конденсации. Ациклический граф. Источники и стоки. Топологическая сортировка.
      Оглавление
        -
        Лекция 4
        Деревья. Оптимизационные задачи на графах. Задача о кратчайшем пути
        Неориентированные деревья. Ориентированные деревья. Применение деревьев: классификация, представление формул, бинарное дерево поиска. Оптимизационные задачи на графах. Взвешенные (нагруженные) графы. Задача о кратчайшем пути в неориентированном графе без весов. Ранжирование вершин. Задача о кратчайшем пути в взвешенном графе. Алгоритм Дейкстры.
        Оглавление
          -
          Лекция 5
          Оптимизационные задачи на графах. Сетевое планирование. Потоки в сетях
          Сетевой график. Задача поиска максимальных путей в графе. Понятия раннего срока и позднего срока. Критический путь. Виды резерва: полный резерв, свободный резерв, независимый резерв. Потоки в сетях. Понятие потока, величина потока. Закон Кирхгофа. Увеличивающаяся цепь.
          Оглавление
            -
            Лекция 6
            Оптимизационные задачи на графах. Алгоритм поиска увеличивающей цепи
            Алгоритм поиска увеличивающей цепи. Разрезы. Пропускная способность разреза.
            Оглавление
              -
              Лекция 7
              Матричные методы анализа графов. Графы и бинарные отношения
              Матричные методы анализа графов. Степень матрицы смежности графа. Сумма степеней матрицы смежности, достижимость и связность. Транзитивное замыкание. Графы и бинарные отношения. Отношения эквивалентности и отношения порядка в терминах графов. Матричные методы анализа мультиграфов. Двудольные графы. Задача о раскраске графа.
              Оглавление
                -
                3 минуты
                -