Дискретный анализ и теория вероятностей
: Информация
Опубликована: 22.04.2015 | Уровень: для всех | Стоимость: 490.00 руб. | Длительность:
В рамках курса рассматриваются основные понятия и методы комбинаторного, дискретного и асимптотического анализа, теории вероятностей, статистики и на примере решения классических задач демонстрируется их применение.
План занятий
Занятие | Заголовок << | Дата изучения |
---|---|---|
- | ||
Лекция 1 | Основы перечислительной комбинаторики
Числа сочетания (с повторениями и без повторений), числа размещения (с повторениями и без повторений), перестановки. Бином Ньютона и биномиальные коэффициенты. Полиномиальная формула и полиномиальные коэффициенты. Формула включений и исключений.
Оглавление | - |
Тест 136 минут | - | |
Лекция 2 | Обобщенная функция Мёбиуса и асимптотики
Простейшие комбинаторные тождества. Знакопеременные тождества. Использование формулы включений и исключений для доказательства тождеств. Функция Мёбиуса и формула обращения Мёбиуса. Подсчет числа циклических последовательностей. Элементарные оценки факториалов, биномиальных коэффициентов и пр. Понятие об энтропии. Неравенство Чернова. Формула Стирлинга (б/д). Асимптотики для биномиальных коэффициентов и пр.
Оглавление | - |
Тест 236 минут | - | |
Лекция 3 | Деревья и унициклические графы
Основные понятия теории графов. Перечисление деревьев на n вершинах (формула Кэли): подход с производящими функциями; подход с использованием биекции между множеством деревьев и множеством размещений с повторениями (коды Прюфера). Изоморфизмы и автоморфизмы графов. Сводка результатов по перечислению графов.
Оглавление | - |
Тест 336 минут | - | |
Лекция 4 | Разбиение чисел на слагаемые
Задачи о разбиениях чисел на слагаемые. Упорядоченные и неупорядоченные разбиения. Рекуррентные соотношения для функций разбиения. Харди-Рамануджана (б/д).
Оглавление | - |
Тест 436 минут | - | |
Лекция 5 | Производящие функции и линейные рекуррентные соотношения
Линейные рекуррентные соотношения с постоянными коэффициентами. Степенные ряды и производящие функции. Применение степенных рядов и производящих функций для доказательства комбинаторных тождеств. Применение степенных рядов и производящих функций для решения рекуррентных соотношений. Числа Каталана, Стирлинга, Бернулли и др. Их применения.
Оглавление | - |
Тест 536 минут | - | |
Лекция 6 | Хроматические числа графов и Кнезеровский граф
Хроматические числа графов. Гипотеза Кнезера. Теорема Ловаса.
Оглавление | - |
Тест 636 минут | - | |
Лекция 7 | Классическое определение вероятности, схема Бернулли и их применение к числам Рамсея
Классическое определение вероятности. Геометрические вероятности. Парадокс Бертрана. Условные вероятности. Независимость событий. Формулы полной вероятности и Байеса. Схема Бернулли. Полиномиальная схема. Схема серий. Случайные блуждания. Понятие о случайном графе. Перколяция. Метод Монте-Карло.
Оглавление | - |
Тест 736 минут | - | |
Лекция 8 | Локальная лемма Ловаса. Начала теории вероятностей
Числа Рамсея. Раскраски гиперграфов.
Оглавление | - |
Лекция 9 | Локальная лемма Ловаса. Теория вероятностей
Покрытие графов линейными лесами.
Оглавление | - |
Тест 836 минут | - | |
Лекция 10 | Распределения случайных величин
Дискретные и абсолютно непрерывные распределения. Основные виды распределений: биномиальное, геометрическое, пуассоновское, гипергеометрическое, равномерное, нормальное, показательное, гамма-распределение, хи-квадрат, Стьюдента, Фишера и пр. Числовые характеристики распределений: математическое ожидание, дисперсия, моменты, факториальные моменты. Совместные распределения. Ковариация и корреляция. Независимость и некоррелированность случайных величин. Понятие о вариационном ряде. Распределения, математические ожидания, дисперсии и ковариации порядковых статистик.
Оглавление | - |
Тест 936 минут | - | |
Лекция 11 | Предельные теоремы
Неравенства Маркова и Чебышёва. Закон больших чисел для схемы Бернулли. Закон больших чисел в форме Чебышёва. Закон больших чисел в форме Хинчина. Неравенство Колмогорова. Усиленный закон больших чисел. Предельные теоремы Муавра-Лапласа для схемы Бернулли (локальная и интегральная).
Оглавление | - |
Лекция 12 | Предельные теоремы (продолжение)
Предельная теорема Пуассона для схемы серий. Производящие и характеристические функции. Центральная предельная теорема (различные формулировки; доказательство только для случая независимых одинаково распределенных случайных величин).
Оглавление | - |
Тест 1036 минут | - | |
Лекция 13 | Размерность Вапника-Червоненкиса
Понятие о выборке и выборочном пространстве. Точечное оценивание параметров. Несмещенность, состоятельность и пр. Методы моментов и максимального правдоподобия. Доверительное оценивание. Методы построения доверительных интервалов.
Оглавление | - |
Тест 1136 минут | - | |
5 часов | - |