Опубликован: 24.10.2016 | Доступ: свободный | Студентов: 1352 / 467 | Длительность: 21:30:00
Лекция 8:

Электронные платежные системы на основе цифровых денег

< Лекция 7 || Лекция 8: 12 || Лекция 9 >

Уже достаточно давно банки и другие коммерческие структуры используют при проведении деловых операций электронный обмен данными EDI (Electronic Data Interchange) и электронный перевод денежных средств EFT (Electronic Funds Transfer). В современных платежных системах весь процесс от начала до конца происходит в электронной (цифровой) форме. При этом для обеспечения безопасности и признания законности (конфиденциальности пересылаемых электронных документов, аутентификации участников информационного обмена) повсеместно используются криптосистемы с открытым ключом для шифрования и формирования электронной подписи.

Учитывая, что традиционные денежные купюры суть не что иное как защищенный от подделки документ, логичным представляется переход к использованию цифровых денег. Защиту от подделки при этом может обеспечить электронная подпись банка, которая безусловно имеет большую надежность, чем традиционные водяные знаки, металлические полосы и т.п.

При осуществлении платежей с помощью популярной на западе кредитной карточки всегда, когда владелец карточки с ее помощью делает покупки, оплачивает налоги и т.д., где-то в базе данных делается отметка об этом событии. Соединив эти в отдельности малозначимые данные, можно собрать большое количество информации об отдельном человеке. При этом последний не в состоянии выяснить, кому и что известно о его частной жизни; не в состоянии управлять точностью этой информации или определять, кто может ее получать. Необходимо реализовать такую систему доступа к ресурсам и услугам, в которой одновременно с решением задач идентификации, аутентификации и авторизации клиента, обеспечивалась бы и анонимность последнего.

Обычные бумажные деньги отвечают всем этим свойствам. Если запрашиваемым ресурсом является какой-либо товар, то наличие у покупателя достаточного количества купюр является доказательством его права на доступ к ресурсу. Хотя каждая из купюр имеет уникальный номер, отслеживать купюры по номерам практически невозможно. Итак, проблема состоит в том, чтобы сделать электронные платежи в такой же степени анонимными, как и расчет с помощью обычных денег. Иначе говоря, возникает задача обеспечения неотслеживаемостиэлектронных документов и, в частности, электронных денег.

В этой главе представлено наиболее рациональное на сегодня решение для централизованных (online) платежных систем - технология цифровых денег или цифровой наличности, которая использует скорость и повсеместное распространение компьютерных сетей, при этом цифровые деньги сохраняют все свойства классических денег, основанных на общественном доверии (конфиденциальность и анонимность платежей, трудность подделки). Отличие цифровых денег от "обычных" заключается в том, что средства поддержки этой технологии являются "виртуальными", "ценности" хранятся в памяти компьютера (на жестком диске пользователя) или в микропроцессорной карте в форме алгоритмов.

Банк обменивает цифровые деньги на обычные после их проверки, используя информацию из специальной базы данных, которая может быть централизованной или распределенной. Обмен цифровыми деньгами между участниками осуществляется в реальном времени через сеть, финансовые расчеты с банком могут осуществляться не только в реальном времени.

Одна из особенностей системы цифровых денег по сравнению с другими (например, основанными на использовании кредитных карт) заключается в полной анонимности транзакций, не требующих от владельца купюры предъявления удостоверения личности, как это происходит в случае операций с физическими деньгами.[3GPP TR 21.905: Vocabulary for 3GPP Specifications.]

Рассмотрим основные криптографические алгоритмы, используемые при создании ЭПС на основе цифровых денег. Полная информация об используемых алгоритмах и протоколах содержится в "Методы защиты информации в компьютерных системах и сетях" .

8.1. Слепая электронная цифровая подпись

В протоколе слепой ЭЦП, представленной на рис. 8.1, принимают участие две стороны: абоненты А и C. Задачей абонента А является получить подпись абонента C на документе М, не раскрывая при этом содержимого документа М.

Протокол слепой ЭЦП RSA

увеличить изображение
Рис. 8.1. Протокол слепой ЭЦП RSA

Схема слепой электронной подписи RSA

  1. Абонент А формирует документ М.
  2. Абонент А формирует случайное число R - затемняющий множитель, единственное требование к которому - существование обратного R^{–1} mod N. Затем А шифрует затемняющий множитель на открытом ключе абонента С, умножает результат на M и посылает получившееся сообщение
    y_A = M * R^e mod N
    абоненту C.
  3. Абонент С, получив сообщение y_A ,подписывает его на своем секретном ключе и посылает сформированное сообщение
    y_c = (M * R^e mod N)^d mod N = M^d * R^{ed} mod N = M{d} * R mod N
    обратно абоненту А.
  4. Абонент А снимает действие затемняющего множителя, вычисляя
    y_c * R^{–1} mod N = M^d mod N,
    и получает в результате документ M, подписанный С, при этом абонент С ничего не узнал о содержимом подписанного им документа.

8.2. Цифровые наличные

Можно выделить следующие свойства, которыми должна обладать система цифровых наличных:

  • трудоемкость подделки цифровых купюр;
  • предотвращение возможности дублирования (с последующей повторной тратой) или оперативное его обнаружение;
  • обеспечение анонимности покупателя;
  • минимум операций с большими базами данных в режиме онлайн.

В системе цифровых наличных обычно можно выделить три протокола:

  • протокол снятия со счета, позволяющий пользователю получать цифровые наличные у банка;
  • платежный протокол, с помощью которого пользователь оплачивает покупки, обменивая их на цифровые купюры;
  • депозитный протокол, позволяющий продавцу сдавать цифровые деньги в банк для перечисления средств на свой счет.

В информационном взаимодействии принимают участие трое:

  • пользователь (будущий покупатель), применяющей цифровые наличные при осуществлении платежа;
  • продавец, обменивающий некоторый товар на цифровые деньги;
  • банк, выдающий цифровые наличные в обмен на обычные деньги, и наоборот.

Предположим, вышеупомянутые протоколы могут иметь следующий вид:

Протокол снятия со счета:

  1. пользователь сообщает банку, что он желает снять со своего счета некоторую сумму, например 100 дол.;
  2. банк в ответ на запрос отправляет цифровую купюру, имеющую следующий формат:
    \{номинал купюры: 100 дол.; номер купюры: 260577\} SK_b,
    где SK_b - секретный ключ банка.
  3. пользователь проверяет подпись банка и если она верна принимает купюру.

Платежный протокол:

  1. пользователь оплачивает товар, предъявляя купюру;
  2. продавец проверяет подпись банка и, если она верна, принимает купюру в качестве платы.

Депозитный протокол:

  1. продавец пересылает купюру банку;
  2. банк проверяет свою подпись и, если она верна, начисляет на счет продавца сумму, равную номиналу купюры.

Описанные протоколы не решают проблемы, так как имеют следующие уязвимости:

  • банк может связать имя пользователя с серийным номером купюры при ее выдаче и отслеживать все его действия;
  • полученные от банка купюры можно дублировать и многократно использовать.

Анонимность покупателя обеспечивает применение слепой подписи в протоколе снятия со счета. Для предотвращения повторной траты банк должен поддерживать список номеров ранее потраченных купюр.

8.3. Строительные блоки

Деньги в форме бумажных купюр или металлических монет не требуют идентификации их владельца (покупателя или продавца), проверки его банковских реквизитов. Анонимность при выполнении удаленных транзакций зависит от двух факторов: возможности обмениваться анонимными сообщениями и возможности осуществлять анонимные платежи.

В системах цифровых денег предпринимаются действия для усиления конфиденциальности транзакций за счет анонимности и неотслеживаемости электронных платежей. Анонимность защищает личность участников (покупателя и продавца) после завершения транзакции. Неотслеживаемость означает, что два платежа одного индивидуума никаким образом не могут быть соотнесены друг с другом. Как следствие, банк (системный оператор) должен быть в состоянии модернизировать баланс счета для каждого участника без идентификации этого участника или соотнесения друг с другом различных транзакций, осуществляемых одним участником с любыми другими. Тем не менее каждый участник может разрешить системному оператору следить за денежными расчетами, чтобы гарантировать, например, платежи или доставку товара или выносить решения в случае возникновения разногласий.

Работа системы основывается на механизме слепой подписи, принципы которой были рассмотрены ранее. Подобный механизм позволяет плательщику самому "чеканить цифровые монеты", а банку "ставить печать" без получения информации о серийном номере монеты. При этом обмен сообщениями происходит с использованием обычных механизмов обеспечения конфиденциальности (шифрование с открытым ключом) и аутентичности (схема классической ЭЦП) информации. Эти механизмы были рассмотрены ранее, поэтому для простоты изложения в последующих разделах главы им не будет уделяться внимания.

8.3.1. Неотслеживаемость абонента А (дебитора)

Процесс обеспечения неотслеживаемости платежа дебитора в виде схемы представлен на рис. 8.2.

Цифровые деньги: а - простейшая схема обеспечения неотслеживаемости покупателя; б - цифровая купюра

увеличить изображение
Рис. 8.2. Цифровые деньги: а - простейшая схема обеспечения неотслеживаемости покупателя; б - цифровая купюра

Рассмотрим действия участника, желающего, чтобы банк подписал цифровую купюру вслепую. Банк имеет открытый ключ проверки подписи e, секретный ключ формирования подписи d, а также модуль N (N = pq, где p и q - различные простые числа) разрядностью 1024 или 2048 бит.

Шаг 1. Для получения цифровой купюры без разглашения ее серийного номера s, клиент А (дебитор) выбирает случайное число r, равномерно распределенное между 1 и (N – 1):

1 r (N – 1).

Только дебитор знает это число r, которое называется затемняющим множителем. Его роль заключается в том, чтобы скрыть серийный номер s купюры. Операция скрытия осуществляется путем умножения номера s на множитель r, зашифрованный на открытом ключе банка:

s * r^e.

Здесь и далее подразумевается, что все операции выполняются по модулю N.

Этот запрос пересылается банку ( рис. 8.2а).

В общем случае сообщение, посылаемое банку, состоит из нескольких полей, включая серийный номер s. Эти поля содержат, в частности, тип банковской операции, номер счета дебитора. Все эти поля подписываются с использованием секретного ключа дебитора, например:

(withdrawal, an_A, s * r^e)a,

где withdrawal - операция снятия денег со счета;
an_A (account number A) - номер счета клиента;
a - секретный ключ клиента.

Соответствующий открытый ключ включается в сертификат, подписанный центром сертификации ключей.

Шаг 2. Банк заверяет купюру, подписывая полученное сообщение с использованием своего секретного ключа

(s * r^e)^d = s^d * r

и возвращает ее абоненту А (дебитору). Затем банк снимает со счета дебитора сумму, соответствующую номиналу купюры.

Купюра анонимна, так как включает в себя только серийный номер, зашифрованный банковским секретным ключом. Банк знает только номер счета и, так как номер s затемнен, не в состоянии соотнести запрос продавца на перевод денежных средств после совершения факта покупки с конкретной цифровой купюрой, ранее вслепую им подписанной.

Абонент А получает полноценную цифровую купюру ( рис. 8.2б) путем деления числа, полученного от банка, на известный ему затемняющий множитель:

(s^d * r) / r = s^d.

Используя банковский открытый ключ, дебитор проверяет соответствие полученной купюры, той, которая была послана на шаге 1, вычисляя

(s^d)^e = s.

Шаг 3. Покупатель посылает подписанную купюру продавцу (абоненту В).

Шаг 4. Для перевода соответствующей суммы на свой счет (осуществления операции депозита) абонент В (продавец) посылает в банк следующее сообщение:

(deposit, an_B, s^d)^b,

где deposit - операция перевода денег на счет;
an_B (account number B) - номер счета продавца;
b - секретный ключ продавца.

После проверки серийного номера купюры банк переводит эквивалентную сумму на счет продавца, изымает данную купюру из обращения, занося ее номер в список номеров купюр, изъятых из обращения. Банк может также послать расписку своему клиенту В в следующей форме:

(deposit, an_B, s^d)^d.

Банк поддерживает список номеров купюр, изъятых из обращения, для защиты от повторного предъявления одной и той же купюры при выполнении операции депозита.

8.3.2. Усиление защиты

В некоторых случаях клиент может быть заинтересован в потере неотслеживаемости для защиты своих прав (например, в случае спора с продавцом или кражи купюр). Формирование случайного числа r происходит путем применения хеш-функции к числу r`, который клиент держит в секрете. Предъявляя r` арбитру, дебитор может доказать, если это необходимо, что именно он владелец купюры, которую банк подписал вслепую. В отличие от продавца, который отказывается выполнять свои обязательства, или мошенника, укравшего купюру, которые не в состоянии сделать то же самое.

Подобным же образом может быть сформирован серийный номер s. Если s` есть случайное число, номер купюры s может быть получен так:

s = h (s`),

где h (x) - хеш-функция.

Дебитор должен предоставить прекурсор s` арбитру, чтобы доказать аутентичность купюры, которую продавец депонировал (положил в банк).

Использование прекурсора позволяет клиенту подтвердить банку, что он действительно является владельцем купюры. На рис. 8.3 приведена схема подобного подтверждения.

Использование прекурсора s` для защиты покупателя

Рис. 8.3. Использование прекурсора s` для защиты покупателя

Шаг 5. Банк проверяет, что серийный номер купюры не содержится в списке ранее использованных купюр, и посылает продавцу заверение в законности сделки. Продавец пересылает это сообщение абоненту В (покупателю). Заверение о законности сделки включает в себя дату истечения срока действия купюры и может быть подписано с использованием секретного ключа банка, в результате и покупатель, и продавец могут удостовериться в целостности и подлинности этого сообщения.

Шаг 6. Абонент В пересылает полученное на предыдущем шаге заверение абоненту А.

Шаг 7. Если абонент А убедился в аутентичности заверения, он посылает прекурсор s` для банка абоненту В.

Шаг 8. Абонент В (продавец) проверяет прекурсор и посылает его в банк, который также убеждается в том, что именно s` использовался для получения s. В этом случае банк дает окончательное заключение о законности сделки, записывает купюру как депонированную, сохраняет копию прекурсора и переводит соответствующую сумму на счет продавца.

8.3.3. Неотслеживаемость абонента В (кредитора)

Процедура, необходимая для обеспечения неотслеживаемости кредитора, представлена на рис. 8.4.

Обеспечение неотслеживаемости кредитора

Рис. 8.4. Обеспечение неотслеживаемости кредитора

Шаг 1. Для обеспечения собственной неотслеживаемости абонент В формирует "полуфабрикат" цифровой купюры s * r^e, затем посылает его абоненту А.

Шаг 2. Абонент А пересылает ее банку, чтобы тот поставил свою слепую подпись и снял соответствующую сумму со счета абонента В (кредитора).

Шаг 3. Подписав вслепую купюру, банк возвращает ее абоненту А.

Шаг 4. Абонент А пересылает ее абоненту В.

Шаг 5. Когда кредитор получает подписанную купюру, он использует открытый ключ банка, чтобы проверить, что данная купюра получена именно из того полуфабриката, который был ранее послан в банк:

(s^d * r)^e = s * r^e.

После удаления затемняющего множителя абонент В посылает купюру в банк. Банк переводит на счет В соответствующую сумму.

В результате банк не в состоянии выяснить, кто из участников - А или В - является инициатором информационного обмена.

< Лекция 7 || Лекция 8: 12 || Лекция 9 >