Национальный исследовательский университет "Высшая Школа Экономики"
Опубликован: 19.11.2012 | Доступ: свободный | Студентов: 12654 / 7823 | Длительность: 29:54:00
Специальности: Менеджер, Преподаватель
Лекция 13:

Технические средства информационных технологий

< Лекция 12 || Лекция 13: 123 || Лекция 14 >
Аннотация: За прошедшее время вычислительная техника, микроэлектроника и вся индустрия информатики стали одной из основных составляющих мирового научно-технического прогресса. Их развитие осуществлялось темпами, которых не знала ни одна отрасль де-ятельности человека. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться. В настоящее время компьютеры используются не только для автоматизации сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.п.
Ключевые слова: алгоритмический язык, технико-экономические показатели, емкость памяти, печатающее устройство, логическая структура, тип команды, тип носителя, флэш-память, операционная среда, свойства информации, TDP, вычислительная задача, Top500, потребности пользователей, прогрессирующее, телеконференция, laptop, коммуникатор, смартфон, робототехника, сетевые компьютеры, централизованное управление, открытая система, управление конфигурацией, подключаемый модуль, оперативное запоминающее устройство, внешнее запоминающее устройство, ВЗУ, ОЗУ команд, коды операций, арифметико-логическое устройство, операционный автомат, графопостроитель, общая шина, основная память, постоянное запоминающее устройство, chipset, язык низкого уровня, параллельные структуры, распределение информации, процесс обработки данных, самоорганизация, функциональная организация, одиночный поток команд, одиночный поток данных, ОКОД, SISD, поток инструкций, множественный поток данных, ОКМД, SIMD, множественный поток команд, MISD, MIMD, процессорный элемент, cyber

Принципы построения компьютера

История и тенденции развития вычислительной техники

В 1946 году появилась первая электронная вычислительная машина (компьютер), что явилось громадным достижением человечества. В реализации проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др. С этого момента началась эра вычислительной техники. За прошедшее время вычислительная техника, микроэлектроника и вся индустрия информатики стали одной из основных составляющих мирового научно-технического прогресса. Их развитие осуществлялось темпами, которых не знала ни одна отрасль де-ятельности человека. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться. В настоящее время компьютеры используются не только для автоматизации сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.п.

Математические основы автоматических вычислений были уже разработаны ранее (Г. Лейбниц, Дж. Буль, A. Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счетов до механических и электромеханических вычислителей) не привели к созданию надежных и экономически эффективных машин.

Появление электронных схем сделало возможным построение электронных вычислительных машин.

Электронная вычислительная машина (ЭВМ), или компьютер, - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей. Следует отметить, что в настоящее время термин "электронная вычислительная машина" практически не используется, уступив место термину "компьютер".

Под пользователем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы.

Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. Однако подготовка задач к решению была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователей во многих случаях специальных знаний и навыков. Как правило, время подготовки задач во много раз превышает время их решения.

Для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и компьютера в целом, а также облегчения их эксплуатации создается специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

Структура представляет собой совокупность элементов и их связей. В зависимости от контекста различают структуры технических, программных, аппаратно-программных и информационных средств.

Часть программных средств обеспечивает взаимодействие пользователей с компьютером и является своеобразным "посредником" между ними. Она получила название "операционная система" и является ядром программного обеспечения.

Под программным обеспечением понимают комплекс программных средств регулярного применения, создающий необходимый сервис для работы пользователей.

Программное обеспечение (ПО) отдельных компьютеров и вычислительных систем (ВС), созданных на их основе, может сильно различаться составом используемых программ, который определяется классом используемой вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователей и т.п. Развитие ПО в значительной степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

В общем случае процесс подготовки и решения задач предусматривает обязательное выполнение следующей последовательности этапов: формулировка проблемы и математическая постановка задачи; выбор метода и разработка алгоритма решения; программирование (запись алгоритма) с использованием некоторого алгоритмического языка; планирование и организация вычислительного процесса - порядка и последовательности использования ресурсов компьютеров и вычислительных систем (ВС); формирование "машинной программы", то есть программы, которую непосредственно будет выполнять компьютер; собственно решение задачи - выполнение вычислений по готовой программе.

По мере развития вычислительной техники автоматизация этих этапов идет снизу вверх. На пути развития электронной вычислительной техники обычно выделяют четыре поколения компьютеров, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ресурсам со стороны пользователей.

Смене поколений сопутствует изменение основных технико-эксплуатационных и технико-экономических показателей компьютеров и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из основных тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь пользователей с компьютерами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на компьютеры в различных сферах их применения.

Возможности улучшения технико-эксплуатационных показателей компьютеров в значительной степени зависят от элементов, используемых для построения их электронных схем. Поэтому при рассмотрении этапов развития компьютеров каждое поколение в первую очередь характеризуется используемой элементной базой.

Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телеграфная аппаратура (телетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти - несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

В этих ЭВМ автоматизации подлежал этап выполнения вычислений, так как у них практически отсутствовало какое-либо программное обеспечение. Все этапы подготовки пользователь должен был готовить вручную самостоятельно, вплоть до получения машинных кодов программ. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. Поэтому в компьютерах следующих поколений появились сначала блоки программ, а затем целые программные системы, облегчающие процесс подготовки задач к решению.

На смену лампам пришли транзисторы в машинах второго поколения (начало 60-х годов). Применение постоянно совершенствуемых транзисторов позволило преобразовать окружающий человека мир (радио, телевидение, бытовая аппаратура, системы связи и т.п.). Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики постоянно улучшались. Существенно были уменьшены размеры, масса и потребляемая мощность.

В компьютерах этого поколения появились методы и приемы программирования, высшей ступенью которых явилось появление систем автоматизации программирования, значительно облегчающих труд математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. Это привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт.

Третье поколение компьютеров (в конце 60-х - начале 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический и функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более улучшить технические и эксплуатационные характеристики машин. Вычислитель-ная техника стала иметь широкую номенклатуру устройств, которые позволили строить разнообразные системы обработки данных, ориентированные на различные применения.

Отличительной особенностью развития программных средств этого поколения является появление ярко выраженного программного обеспечения и развитие его ядра - операционных систем, отвечающих за организацию и управление вычислительным процессом. Стоимость программного обеспечения стала расти и в настоящее время намного опережает стоимость аппаратуры (рис.13.1). Наибольшая крутизна графика соответствует времени появления операционных систем - началу 80-х годов.

ОС планирует последовательность распределения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые применяются для вычислений: машинное время отдельных процессоров или компьютеров, входящих в систему; объемы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы, как общего, так и специального применения, и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсеместно в компьютерах различных классов.

 Динамика изменения стоимости аппаратурных и программных средств

Рис. 13.1. Динамика изменения стоимости аппаратурных и программных средств

Здесь были существенно расширены возможности доступа к ним со стороны абонентов, находящихся на различных, в том числе и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с компьютером достигалось за счет развитой сети абонентских пунктов, связанных с ним информационными каналами связи, и соответствующего программного обеспечения.

Для компьютеров четвертого поколения (80-е годы) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказало существенное воздействие на логическую структуру компьютера и его программное обеспечение

В четвертом поколении с появлением микропроцессоров (1971 г.) возник новый класс вычислительных машин - микроЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

Появление ПК - наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. Коренным образом были преобразованы сферы делопроизводства, торговли, складского учета и т.п. Компьютеры стали использоваться в различных системах управления технологическими процессами, производствами, фирмами, организациями и т.д.

Применение ПК позволило применять новые информационные технологии и создавать системы распределенной обработки данных. Высшей стадией систем распределенной обработки данных являются компьютерные (вычислительные) сети различных уровней - от локальных до глобальных.

В своем развитии компьютеры первых четырех поколений не выходили за рамки классической структуры, ориентированной на последовательные вычисления по программе. Но в начале нового тысячелетия (2005-2006 гг.) в связи с успехами микроэлектроники появились, а затем стали доминировать многоядерные микропроцессоры. Это позволило пе-рейти к параллельным вычислениям даже внутри отдельного компьютера. Де-факто возникли качественно новые по построению и своим возможностям компьютеры следующего поколения. Однако еще в 1980 году появился японский проект создания компьютеров пятого поколения, отличительной особенностью которых должен быть встроенный искусст-венный интеллект. Видимо, несовпадение признаков классификации не позволяет сейчас узаконить переход на компьютеры нового поколения.

В новых компьютерах продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества, параллелизм в работе). Следует указать на заметный рост уровня "интеллектуальности" систем, создаваемых на их основе. Подобные тенденции будут сохраняться и впредь. Так, по мнению исследователей [46], новые компьютеры наращивают и совершенствуют встроенный в них "искусственный интеллект", что позволяет пользователям обращаться к ним на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Аппаратная часть компьютеров постоянно усложняется, для них приходится создавать сложное многоэшелонное иерархическое программное обеспечение.

< Лекция 12 || Лекция 13: 123 || Лекция 14 >
Фахруддин хемракулыев
Фахруддин хемракулыев
Шерхон Давлатов
Шерхон Давлатов

Почему тесты (1,2,3..) не работают. Хочу пройти тест но не получается