Московский государственный университет путей сообщения
Опубликован: 01.06.2007 | Доступ: свободный | Студентов: 1914 / 103 | Оценка: 4.38 / 3.75 | Длительность: 22:59:00
ISBN: 978-5-9556-0094-9
Специальности: Программист
Лекция 2:

Основы нейросетевых технологий

2.6. Пространство признаков

Выше неявно проявилась лишь следующая модель. Образ буквы, например а, налагается на входной слой нейросети - рецепторы. Конфигурация возбужденных рецепторов, порождая прохождение возбуждения через внутренние слои нейросети (образуя путь возбуждения), определяла возбуждение (если не гасло по пути) одного из нейронов выходного слоя, говорящего "это буква а ". Интуитивно ясно, что устойчивость такой схемы по отношению к огромному множеству конфигураций возбуждений рецепторов, соответствующих одной только букве а, вряд ли высока. Вглядываясь в себя, мы видим, что такое непосредственное распознавание осуществляется далеко не всегда, особенно на этапе получения школьного образования, ибо наше образование получается на основе признаков и определений (правил вывода).

Как мы характеризуем строчную букву а? Это кружочек, справа примыкает палочка с хвостиком вправо.

А прописная А? Две палочки с перекладинкой. Но ведь буква Н тоже соответствует этому определению. Тогда мы добавляем: две палочки, соединенные вверху. (Кстати, соединение вверху может быть в результате небрежности лишь обозначено. Тогда о намеке на него мы можем судить по наклону палочек. Дальнейшая небрежность может привести к неразличимости букв А и Н.)

Значит, существует ряд признаков, лежащих в основе определений. И мы на интуитивном уровне понимаем, что такой способ распознавания гораздо более устойчив к искажениям и особенностям почерка, однозначен и надежен. Ведь при изображении буквы А можно допустить не только небрежность в верхнем соединении палочек, но и значительную разницу в общем наклоне буквы, в длинах боковых палочек, в месте расположения перекладины, в ее наклоне и длине и т.д. Искажение может привести к сомнениям лишь при крайней похожести на цифру 4, на телеграфный столб или на греческую \Delta . Но даже в этом случае окончательный вывод может быть сделан на основе контекста, т.е. по использованию дополнительных признаков "по умолчанию".

Значит, в нашем случае необходимо ввести такие признаки, как наличие кружка, палочек, хвостиков, их взаимного расположения и т.д. То есть необходимо построить пространство признаков , преобразовать наши входные изображения в это пространство, и тогда появится возможность получения более определенного и устойчивого к искажениям заключения.

Перевод входного изображения в пространство признаков значительно расширяет возможности "разглядывания" - масштабирования, размещения, поиска угла наклона и т.д., т.е. позволяет с более высокой достоверностью производить распознавание.

Например, изображение танка может в разных ракурсах ложиться на входной слой рецепторов. Конечно, можно запомнить, что "и это - танк", "и это - тоже танк" и т.д. Но если ввести хотя бы такое определение, достаточное для соседки - тети Маши, как "массивный корпус на гусеничном ходу (тоже нуждается в определении!), а сверху башня с дулом пушки, и все такое зелененькое", то это научит хотя бы принимать меры предосторожности.

Эльвира Герейханова
Эльвира Герейханова

Раньше это можно было зделать просто нажав на тест и посмотреть результаты а сейчас никак

Елена Лобынцева
Елена Лобынцева
Помогите разобраться как можно подобрать НС для распознавания внутренней области выпуклого многоугольника?