Способы визуального представления данных. Методы визуализации
Основные тенденции в области визуализации
Как уже отмечалось, при помощи средств визуализации поддерживаются важные задачи бизнеса, среди которых - процесс принятия решений. В связи с этим возникает необходимость перехода средств визуализации на более качественный уровень, который характеризуется появлением абсолютно новых средств визуализации и взглядов на ее функции, а также развитием ряда тенденций в этой области.
Среди основных тенденций в области визуализации Филип Рассом (Philip Russom) выделяет [68]:
- Разработка сложных видов диаграмм.
- Повышение уровня взаимодействия с визуализацией пользователя.
- Увеличение размеров и сложности структур данных, представляемых визуализацией.
- Разработка сложных видов диаграмм.
Большинство визуализаций данных построено на основе диаграмм стандартного типа (секторные диаграммы, графики рассеяния и.т.д.). Эти способы являются одновременно старейшими, наиболее элементарными и распространенными. В последние годы перечень видов диаграмм, поддерживаемых инструментальными средствами визуализации, существенно расширился. Поскольку потребности пользователей весьма многообразны, инструменты визуализации поддерживают самые различные типы диаграмм. Например, известно, что бизнес-пользователи предпочитают секторные диаграммы и гистограммы, тогда как ученых больше устраивают визуализации в виде графиков рассеяния и диаграмм констелляции. Пользователи, работающие с геопространственными данными, сильнее заинтересованы в картах и прочих трехмерных представлениях данных. Электронные инструментальные панели, в свою очередь, более популярны среди руководителей, использующих бизнес-аналитические технологии для контроля за показателями работы компании. Такие пользователи нуждаются в наглядной визуализации в виде "спидометров", "термометров" и "светофоров".
Средства создания диаграмм и презентационной графики предназначены главным образом для визуализации данных. Однако возможности такой визуализации обычно встроены и во множество различных других программ и систем - в инструменты репортинга и OLAP, средства для Text Mining и Data Mining, а также в CRM-приложения и приложения для управления бизнесом. Для создания встроенной визуализации многие поставщики реализуют визуализационную функциональность в виде компонент, встраиваемых в различные инструменты, приложения, программы и web-страницы (в том числе инструментальные панели и персонализированные страницы порталов).
- Повышение уровня взаимодействия с визуализацией пользователя.
Еще совсем недавно большая часть средств визуализации представляла собой статичные диаграммы, предназначенные исключительно для просмотра. Сейчас широко используются динамические диаграммы, уже сами по себе являющиеся пользовательским интерфейсом, в котором пользователь может напрямую и интерактивно манипулировать визуализацией, подбирая новое представление информации.
Например, базовое взаимодействие позволяет пользователю вращать диаграмму или изменять ее тип в поисках наиболее полного представления данных. Кроме того, пользователь может менять визуальные свойства - к примеру, шрифты, цвета и рамки. В визуализациях сложного типа (графиках рассеяния или диаграммах констелляции) пользователь может выбирать информационные точки с помощью мыши и перемещать их, облегчая тем самым понимание представления данных.
Более совершенные методы визуализации данных часто включают в себя диаграмму или любую другую визуализацию как составной уровень. Пользователь может углубляться (drill down) в визуализацию, исследуя подробности обобщенных ею данных, или углубляться в OLAP, Data Mining или другие сложные технологии.
Сложное взаимодействие позволяет пользователю изменять визуализацию для нахождения альтернативных интерпретаций данных. Взаимодействие с визуализацией подразумевает минимальный по своей сложности пользовательский интерфейс, в котором пользователь может управлять представлением данных, просто "кликая" на элементы визуализации, перетаскивая и помещая представления объектов данных или выбирая пункты меню. Инструменты OLAP или Data Mining превращают непосредственное взаимодействие с визуализацией в один из этапов итерационного анализа данных. Средства Text Mining или управления документами придают такому непосредственному взаимодействию характер навигационного механизма, помогающего пользователю исследовать библиотеки документов.
Визуальный запрос является наиболее современной формой сложного взаимодействия пользователя с данными. В нем пользователь может, например, видеть крайние информационные точки графика рассеяния, выбирать их мышкой и получать новые визуализации, представляющие именно эти точки. Приложение визуализации данных генерирует соответствующий язык запроса, управляет принятием запроса базой данных и визуально представляет результирующее множество. Пользователь может сфокусироваться на анализе, не отвлекаясь на составление запроса.
- Увеличение размеров и сложности структур данных, представляемых визуализацией.
Элементарная секторная диаграмма или гистограмма визуализирует простые последовательности числовых информационных точек. Однако новые усовершенствованные типы диаграмм способны визуализировать тысячи таких точек и даже сложные структуры данных - например, нейронные сети.
Скажем, средства OLAP (а также инструменты генерации запросов и выпуска отчетов) уже давно поддерживают диаграммы для своих онлайновых отчетов. Новые визуализационные программы обновляют контент за счет периодически повторяющегося считывания данных. Фактически пользователи визуализационных программ, отслеживающие линейные процессы (колебания фондового рынка, показатели работы компьютерных систем, сейсмограммы, сетки полезности и др.), нуждаются в загрузке данных в режиме реального времени или близком к нему режиме.
Пользователи инструментов Data Mining обычно анализируют очень большие наборы численных данных. Традиционные типы диаграмм для бизнеса (секторные диаграммы и гистограммы) плохо справляются с представлением тысяч информационных точек. Поэтому инструменты Data Mining почти всегда поддерживают некую форму визуализации данных, способную отражать структуры и закономерности исследуемых наборов данных, в соответствии с тем аналитическим подходом, который используется в инструменте.
Помимо того, что визуализация поддерживает обработку структурированных данных, она также является ключевым средством представления схем так называемых неструктурированных данных, например текстовых документов, т.е. Text Mining. В частности, средства Text Mining могут осуществлять парсинг больших пакетов документов и формировать предметные указатели понятий и тем, освещенных в этих документах. Когда предметные указатели созданы с помощью нейросетевой технологии, пользователю непросто продемонстрировать их без некоторой формы визуализации данных. Визуализация в таком случае преследует две цели:
- визуальное представление контента библиотеки документов;
- навигационный механизм, который пользователь может применять при исследовании документов и их тем.
Выводы
Как показывают многие исследования, визуализация является одним из наиболее перспективных направлений анализа данных, в т.ч. Data Mining. Однако в этом направлении можно выделить проблемы, такие как сложность ориентации среди огромного количества инструментов, предлагающих решения по визуализации, а также непризнание рядом специалистов методов визуализации как полноценных средств анализа и навязывание им вспомогательной роли при использовании других методов. Однако у визуализации есть неоспоримые преимущества: она может служить источником информации для пользователя, не требуя теоретических знаний и специальных навыков работы, может выступить тем языком, который объединит профессионалов из различных проблемных областей, может превратить исходный набор данных в изображение, благодаря которому у исследователя могут появиться абсолютно новые, неожиданные решения.