Что такое Data Mining?
Сравнение статистики, машинного обучения и Data Mining
- Статистика
- Машинное обучение
- Более эвристично.
- Концентрируется на улучшении работы агентов обучения.
- Data Mining.
Понятие Data Mining тесно связано с технологиями баз данных и понятием данные, которые будут подробно рассмотрены в следующей лекции.
Развитие технологии баз данных
1960-е гг.
В 1968 году была введена в эксплуатацию первая промышленная СУБД система IMS фирмы IBM.
1970-е гг.
В 1975 году появился первый стандарт ассоциации по языкам систем обработки данных - Conference on Data System Languages (CODASYL), определивший ряд фундаментальных понятий в теории систем баз данных, которые до сих пор являются основополагающими для сетевой модели данных. В дальнейшее развитие теории баз данных большой вклад был сделан американским математиком Э.Ф. Коддом, который является создателем реляционной модели данных.
1980-е гг.
В течение этого периода многие исследователи экспериментировали с новым подходом в направлениях структуризации баз данных и обеспечения к ним доступа. Целью этих поисков было получение реляционных прототипов для более простого моделирования данных. В результате, в 1985 году был создан язык, названный SQL. На сегодняшний день практически все СУБД обеспечивают данный интерфейс.
1990-е гг.
Появились специфичные типы данных - "графический образ", "документ", "звук", "карта". Типы данных для времени, интервалов времени, символьных строк с двухбайтовым представлением символов были добавлены в язык SQL. Появились технологии DataMining, хранилища данных, мультимедийные базы данных и web-базы данных.
Возникновение и развитие Data Mining обусловлено различными факторами, основными среди которых являются следующие [2]:
- совершенствование аппаратного и программного обеспечения;
- совершенствование технологий хранения и записи данных ;
- накопление большого количества ретроспективных данных ;
- совершенствование алгоритмов обработки информации.
Понятие Data Mining
Data Mining - это процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей ( шаблонов информации) [3].
Технологию Data Mining достаточно точно определяет Григорий Пиатецкий-Шапиро (Gregory Piatetsky-Shapiro) - один из основателей этого направления:
Data Mining - это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности.
Суть и цель технологии Data Mining можно охарактеризовать так: это технология, которая предназначена для поиска в больших объемах данных неочевидных, объективных и полезных на практике закономерностей.
Неочевидных - это значит, что найденные закономерности не обнаруживаются стандартными методами обработки информации или экспертным путем.
Объективных - это значит, что обнаруженные закономерности будут полностью соответствовать действительности, в отличие от экспертного мнения, которое всегда является субъективным.
Практически полезных - это значит, что выводы имеют конкретное значение, которому можно найти практическое применение.
Знания - совокупность сведений, которая образует целостное описание, соответствующее некоторому уровню осведомленности об описываемом вопросе, предмете, проблеме и т.д.
Использование знаний (knowledge deployment) означает действительное применение найденных знаний для достижения конкретных преимуществ (например, в конкурентной борьбе за рынок).
Приведем еще несколько определений понятия Data Mining.
Data Mining - это процесс выделения из данных неявной и неструктурированной информации и представления ее в виде, пригодном для использования.
Data Mining - это процесс выделения, исследования и моделирования больших объемов данных для обнаружения неизвестных до этого структур (patterns) с целью достижения преимуществ в бизнесе (определение SAS Institute).
Data Mining - это процесс, цель которого - обнаружить новые значимые корреляции, образцы и тенденции в результате просеивания большого объема хранимых данных с использованием методик распознавания образцов плюс применение статистических и математических методов (определение Gartner Group).
В основу технологии Data Mining положена концепция шаблонов (patterns), которые представляют собой закономерности, свойственные подвыборкам данных, кои могут быть выражены в форме, понятной человеку.
"Mining" по-английски означает "добыча полезных ископаемых", а поиск закономерностей в огромном количестве данных действительно сродни этому процессу.
Цель поиска закономерностей - представление данных в виде, отражающем искомые процессы. Построение моделей прогнозирования также является целью поиска закономерностей.